摘要
本文研究了囚禁于谐振子势阱中的两分量旋转自旋轨道耦合玻色爱因斯坦凝聚体(BEC)的基态性质和自旋纹理。我们首先通过托马斯费米近似得到了凝聚体出现不同分布的临界条件,然后利用虚时演化方法和向前向后欧拉傅里叶赝谱法在数值上进行了模拟,最后将数值模拟的结果与解析近似的结果对比,发现两者是相吻合的。在本研究中,我们发现了条纹结构这一新奇的基态结构,并且发现旋转角频率不能大于谐振子势的约束频率,如果超过约束频率,系统将因受到强烈的离心力作用而散落。这些新的发现将会为在实验上实现两组分自旋轨道耦合BEC有一定的指导意义。
We have investigated the ground states and spin textures of rotating two-component BoseEinstein condensates(BECs)confined in a harmonic trap.Firstly we get the critical condition for different reign by the Thomas-Fermi approximation,then we use the explicit imaginary-time algorithm and the forward Euler Fourier transform method to simulate the numerical solution,and the numerical simulation results are identical with the results of analytic approximation.In this study,we find the stripe structure,which is novel,and notice that the rotating angular frequency should be smaller than that of the constraints of harmonic oscillator potential,otherwise,the system will be scattered by the strong centrifugal force.These new findings will play an important role in related experiments.
作者
陈潇
张素英
CHEN Xiao;ZHANG Su-ying(Institute of Theoretical Physics,Shanxi University,Taiyuan 030006,China)
出处
《量子光学学报》
北大核心
2018年第3期271-278,共8页
Journal of Quantum Optics
基金
国家自然科学基金(11772177,91430109)
山西省青年科技研究基金(201701D12111501)