期刊文献+

谐波齿轮啮合刚度的有限元分析 被引量:5

Finite Element Analysis of Meshing Stiffness of Harmonic Gear
下载PDF
导出
摘要 谐波齿轮啮合刚度计算是其动力学分析的基础。基于有限元加载接触分析原理,结合谐波齿轮的静态及动态接触特点,以单个轮齿啮入-啮出过程中的不同位置为研究对象,选取接触位置离散点,对各离散点的啮合数据进行提取分析,得到了单个轮齿不同啮合位置的单齿刚度曲线及综合啮合刚度曲线。并与已有研究成果进行了对比,验证了该方法的正确性,为研究谐波齿轮传动的动力学特性提供了依据。 The calculation of harmonic gear meshing stiffness is the basis of dynamics analysis. According to the finite element analysis theory of loading contact,and combining with its static and dynamic contact properties,taking each different location during one engaging-in and engaging-out cycle of a tooth as the research object. Then,by extracting the meshing data of discrete point on contact location,the curve of single-tooth stiffness and the synthesizing meshing stiffness in one engaging-in and engaging-out is got. Comparing with the previous researching result,the correctness of the method is verified,which provides the basis for dynamics analysis for harmonic gear.
作者 韦乐余 王长路 张立勇 刘新猛 乔雪涛 王瑞峰 Wei Leyu;Wang Changlu;Zhang Liyong;Liu Xinmeng;Qiao Xuetao;Wang Ruifeng(Zhengzhou Research Institute of Mechanical Engineering Co.,Ltd.,Zhengzhou 450001,China;School of Mechanical Engineering,North China University of Water Resources and Electric Power,Zhengzhou 450046(3 Zhengzhou Research Institute of Advanced Equipment & Infommtion Industry Technology Co.,Ltd.,Zhengzhou 450001(4 School of Mechanical and Electrical Engineering,Zhongyuan University of Technology,Zhengzhou 450007,China)
出处 《机械传动》 CSCD 北大核心 2018年第6期144-147,150,共5页 Journal of Mechanical Transmission
关键词 谐波齿轮 有限元 接触分析 啮合刚度 Harmonic gear Finite element Contact analysis Meshing stiffness
  • 相关文献

参考文献4

二级参考文献58

  • 1Theodossiades S, Natsiavas S. Nonlinear dynamics of gear pair systems with periodic stiffness and backlash[J]. Journal of Sound and Vibration,2000,229(2):287-310. 被引量:1
  • 2JIA Shengxiang, Howard I. Comparison of localized spelling and crack damage from dynamic modeling of spur gear vibrations[J]. Mechanical Systems and Signal Processing, 2006,20 :332-349. 被引量:1
  • 3LIN J, Parker R G. Planetary gear parametric instability caused by mesh stiffness variation[J]. Journal of Sound and Vibration, 2002,249 : 129- 145. 被引量:1
  • 4Kiracofe D R, Parker R G. Structured vibration modes of general compound planetary gear systems[J].Journal of Vibration and Acoustics,2007,129(1) : 1-16. 被引量:1
  • 5Umezawa K, Deflection and moments due to a concentrated load on a rack-shaped cantilever plate with finite width for gears[J]. Bulletin of JSME, 1972,15(79) : 116-130. 被引量:1
  • 6Umezawa K. The meshing test on helical gear under load transmissions: 1st report--The approximate formula for deflections of gear tooth[J]. Bulletin of JSME, 1972, 15(90):1632-1639. 被引量:1
  • 7Umezawa K. The meshing test on helical gear under load trartsmissions; 2nd report--The approximate formula for bending-moment distribution of gear tooth[J]. Bulletin of JSME, 1973,16(92):407-413. 被引量:1
  • 8Umezawa K. The meshing test on helical gear under load transmissions:3rd report The static behaviours of driven gear[J].Bulletin of JSME, 1974,17(112) : 1348-1355. 被引量:1
  • 9Umezawa K,Suzuki T, Houjoh H,et al. Vibrations of power transmission helical gears(the effect of contact ration on the vibration)[J]. Bulletin of JSME, 1985, 28 (238): 694 -700. 被引量:1
  • 10Umezawa K, Suzuki T, Sato T. Vibrations of power transmission helical gears(approximate equation of tooth stiffness)[J]. Bulletin of JSME,1986,29(251):1605-1611. 被引量:1

共引文献122

同被引文献43

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部