摘要
温州市域铁路S1线采用公交化的运营模式,对列车速度的控制要求高,牵引负荷较大,列车自动过分相时运行安全得不到很好的保证。采用同相供电技术可以取消变电所出口处的电分相,并可较好地解决负序问题。本文以单相组合式同相供电系统为例,介绍了组合式同相供电系统的结构及原理,并基于相关牵引设计资料搭建单相组合式同相供电系统模型进行仿真分析,仿真结果表明该系统对负序有很好的治理效果。
Line S1 of Wenzhou Commuter Rail adopts the operation mode of bus rapid transit, which requires high control of train running speed, great traction load, and the train operation safety is unable to be guaranteed when the train is passing through automatically the phase break. With adoption of co-phase power supply technology, it is able to cancel the phase break at exit of substation and may solve the problems of negative sequence. The paper, with the single phase combined co-phase power supply system as an example, introduces the structure and principles of combined co-phase power supply system, and through simulation and analysis are made by establishing of a single phase combined co-phase power supply system model based on related traction design data, the simulation results show that the system has a better effect for control of negative sequence.
出处
《电气化铁道》
2018年第4期14-18,共5页
Electric Railway
关键词
单相组合式同相供电
负序
同相补偿装置
平衡变换原理
Single phase combined co-phase power supply
negative sequence
co-phase compensation device
principle of equilibrium transformation