期刊文献+

混淆恶意JavaScript代码的多特征检测识别与分析 被引量:1

Multi-feature detection identification and analysis of obfuscated malicious JavaScript code
下载PDF
导出
摘要 JavaScript目前已经成为交互式网页和动态网页中一项广泛采用的技术,恶意的JavaScript代码也变得活跃起来,已经被当作基于网页的一种攻击手段。通过对大量JavaScript恶意代码的研究,对混淆恶意JavaScript代码进行特征提取与归类,从基于属性特征、基于重定向特征、基于可疑关键词特征、基于混淆特征四大类中总共提取了82个特征,其中47个是四大类中的新特征。从真实环境中收集了总数为5525份JavaScript正常与混淆的恶意代码用于训练与测试,利用多种有监督的机器学习算法通过异常检测模式来评估数据集。实验结果表明,通过引入新的特征,所有分类器的检测率较未引入新特征相比有所提升,并且误检率(FalseNegativeRate)有所下降。 JavaScript has become a widely used technology in interactive and dynamic webpages,malicious JavaScript code also becomes active and has been used as an attack method based on Web pages. Based on the study of a large number of JavaScript malicious code,the paper makes the feature extraction and classification on obfuscated malicious JavaScript code. From the four categories: based on attribute features,redirection features,suspicious keyword features and confusion features,a total of 82 features are extracted,of which 47 are new features in the four major categories. 5 525 JavaScript-based pages are collected in a real environment for training and testing,and data sets are further evaluated through anomaly detection patterns using a variety of supervised machine learning algorithms. Experiment shows that compared with not introducing new features,the detection rate of all classifiers is improved by introducing new features,and the False Negative Rate has decreased.
作者 曲文鹏 赵连军 邓旭 QU Wenpeng;ZHAO Lianjun;DENG Xu(College of Computer Science and Technology,Shandong University of Technology,Zibo Shandong 255049,China)
出处 《智能计算机与应用》 2018年第4期42-47,共6页 Intelligent Computer and Applications
关键词 机器学习 恶意代码 异常检测 混淆 JAVASCRIPT machine learning malicious code anomaly detection obfuscation JavaScript
  • 相关文献

参考文献2

二级参考文献12

  • 1Hallaraker O,Vigna G.Detecting malicious javascript code in mozilla[C]//Engineering of Complex Computer Systems,2005.ICECCS2005.Proceedings.10th IEEE International Conference on.IEEE,2005:85-94. 被引量:1
  • 2Feinstein B,Peck D.Caffeine monkey:Automated collection,detection and analysis of malicious javascript[J].Black Hat USA,2007. 被引量:1
  • 3Curtsinger C,Livshits B,Zorn B G,et al.ZOZZLE:Fast and Precise InBrowser JavaS cript Malware Detection[C]//USENIX Security Symposium,2011:33-48. 被引量:1
  • 4Likarish P,Jung E,Jo I.Obfuscated malicious javascript detection using classification techniques[C]//Malicious and Unwanted Software(MALWARE),2009 4th International Conference on.IEEE,2009:47-54. 被引量:1
  • 5Cova M,Kruegel C,Vigna G.Detection and analysis of drive-by-download attacks and malicious JavaS cript code[C]//Proceedings of the19th international conference on World wide web.ACM,2010:281-290. 被引量:1
  • 6Choi Y H,Kim T G,Choi S J,et al.Automatic detection for javascript obfuscation attacks in web pages through string pattern analysis[M]//Future Generation Information Technology.Springer Berlin Heidelberg,2009:160-172. 被引量:1
  • 7Fraiwan M,Al-Salman R,Khasawneh N,et al.Analysis and Identification of Malicious JavaS cript Code[J].Information Security Journal:A Global Perspective,2012,21(1):1-11. 被引量:1
  • 8Xu W,Zhang F,Zhu S.The power of obfuscation techniques in malicious JavaS cript code:A measurement study[C]//Malicious and Unwanted Software(MALWARE),2012 7th International Conference on.IEEE,2012:9-16. 被引量:1
  • 9Alexa Top 500 Global Sites[OL].Available at:http://www.alexa.com/topsites. 被引量:1
  • 10VX Heavens[OL].http://www.entlux.org. 被引量:1

共引文献20

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部