摘要
We report the growth and characterization of atomically thick NbS2, TaS2, and FeS films on a 6H-SiC(0001) substrate terminated with monolayer or bilayer epitaxial graphene. The crystal and electronic structures are studied by scanning tunneling microscopy and reflection high-energy electron diffraction. The NbS2 monolayer is solely in the 2H structure, while the TaS2 monolayer contains both 1T and 2H structures. Charge-density waves are observed in all phases. For the FeS films, the tetragonal structure coexists with the hexagonal one and no superconductivity is observed.
We report the growth and characterization of atomically thick NbS2, TaS2, and FeS films on a 6H-SiC(0001) substrate terminated with monolayer or bilayer epitaxial graphene. The crystal and electronic structures are studied by scanning tunneling microscopy and reflection high-energy electron diffraction. The NbS2 monolayer is solely in the 2H structure, while the TaS2 monolayer contains both 1T and 2H structures. Charge-density waves are observed in all phases. For the FeS films, the tetragonal structure coexists with the hexagonal one and no superconductivity is observed.