期刊文献+

基于大数据分析的思政教学系统的设计与实现 被引量:5

Design and implementation of ideological and political education system based on data analysis
原文传递
导出
摘要 针对传统多媒体教学手段存在重技轻教、使用死板和缺乏选择性等问题,文中设计与实现了一种基于大数据分析的思政教学系统。该系统由多媒体教学软件和大数据推荐两部分组成,多媒体教学软件基于B/S架构实现了在线教学与资源管理功能;大数据推荐子系统通过搜集、分析用户的行为和提取用户特征,向用户推荐更合适的学习资源。功能实现及性能测试结果表明,本系统实现了以学生为主体的教学模式。其不仅可以有效提升学生的学习体验,且还能支持多人同时在线学习,可有效提升学生学习的主动性。 Aiming at the problems of traditional multimedia teaching methods such as heavy education,inflexible use,and lack of selectivity,a ideological education system based on big data analysis is designed and implemented. The system is composed of multimedia teaching software and big data recommendation. The multimedia teaching software implements online teaching and resource management functions based on B/S architecture; the big data recommendation subsystem collects and analyzes user behavior and extracts user characteristics to users. Recommend more suitable learning resources. The results of functional implementation and performance test show that the proposed system realizes a student-centered teaching model,which can not only effectively improve the student’s learning experience,but also support multi-person online learning at the same time,and can effectively enhance students’ initiative in learning.
作者 赵瑞丹 ZHAO Ruidan(Xi'an Aviation Vocational and Technical College,Shanxi Xi'an,710089)
出处 《自动化与仪器仪表》 2018年第8期117-119,共3页 Automation & Instrumentation
关键词 思政教学 大数据 推荐 B/S 资源管理 在线学习 Ideological and political education big data recommendations b/s resource management online learning
  • 相关文献

参考文献14

二级参考文献108

  • 1李德生,王海洋.一种将业务规则与BPEL有效集成的方法[J].计算机应用,2005,25(11):2705-2708. 被引量:8
  • 2冯璐,冷伏海.共词分析方法理论进展[J].中国图书馆学报,2006,32(2):88-92. 被引量:564
  • 3谢幸 郑宇.基于地理信息的用户行为理解.计算机学会通讯,2008,. 被引量:3
  • 4唐杰,杨洋.移动社交网络中的用户行为预测模型[J].中国计算机学会通讯,2012,8(5):21-25. 被引量:5
  • 5谭磊.大数据挖掘[M].北京:电子工业出版社,2014. 被引量:3
  • 6Grobelnik M. Big 一 data computing: Creating revolutionarybreakthroughs in commerce,science,and society [ R/ OL ].(2012 - 07 - 04) [ 2013 - 12 - 26 ] http://videolectures,net/ eswc2012 _grobelnik_big_data/. 被引量:1
  • 7Barwick H. The “four Vs” of big data implementing informa-tion infrastructure symposium [EB/OL]. (2011 -08 -05)[2013 - 12 - 26] http://www. computerworld. com. au/arti-cle/396198/iiis一four—vs _big_data/. 被引量:1
  • 8Greg R,Alisha K. How big data drives intelligent transporta-tion [EB/OL]. (2012 -08 -16) [2013 -12 -26]http://www. greenbiz. com/blog/2012/08/15/how - big - data -drives - intelligent - transportation. 被引量:1
  • 9周为钢,杨良怀,潘建,等.论智能交通大数据处理平台之构建[C].合肥:第八届中国智能交通年会,2013. 被引量:3
  • 10Hsinchun Chen Chiang,Roger H L,Storey Veda C. Businessintelligence and analytics : from big data to big impact [ J].MIS Quarterly,2012(4) :1165 -1188. 被引量:1

共引文献183

同被引文献38

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部