摘要
目的探讨出生胎龄及出生体重对新生儿早期预警评分(NEWS)预测早产儿住院期间病情恶化的能力的影响。方法收集174例早产儿入院时基本资料和相关生理参数,包括出生胎龄、出生体重、出生后1 min Apgar评分、分娩方式、体温、呼吸、心率、血氧饱和度和意识情况,同时记录住院期间有无病情恶化。采用logistic回归模型分析影响早产儿病情恶化的影响因素,采用Hosmer-Lemeshow检验评估NEWS模型及NEWS+出生胎龄+出生体重模型的拟合优度。结果出生胎龄、出生体重及入院时体温、心率、呼吸、血氧饱和度、意识情况是早产儿病情恶化的影响因素(均P<0.05)。NEWS模型及NEWS+出生胎龄+出生体重模型预测病情恶化的拟合度均良好(P>0.05),预测准确率分别为90.80%(158/174)、93.68%(163/174)。结论增加出生胎龄、出生体重两项指标能提高NEWS对早产儿住院期间病情恶化风险的预测准确率。
Objective To investigate the impact of gestational age(GA) and birth weight(BW) on the predictive efficiency of Newborn Early Warning Score(NEWS) for disease deterioration in premature infants during hospitalization. Methods Basic data and related physiological parameters of 174 premature infants were collected on admission,including GA,BW,Apgar score at 1 minute after birth,delivery way,temperature,respiratory rate,heart rate,oxygen saturation and consciousness. The incidence of disease deterioration during hospitalization was also recorded. Logistic regression model was used to analyze the factors influencing the disease deterioration in premature infants. Hosmer-Lemeshow test were used to evaluate the goodness of fit of NEWS model and NEWS + GA + BW model. Results GA,BW,temperature,heart rate,respiratory rate,oxygen saturation and consciousness on admission were the factors influencing the disease deterioration in premature infants(all P〈0. 05). NEWS model and NEWS + GA + BW model achieved good goodness of fit for predicting the disease deterioration(P〉0. 05),with the predictive accuracies of 90. 80%(158/174) and 93. 68%(163/174) respectively.Conclusion Combined utility of GA and BW can improve the predictive accuracy of NEWS for disease deterioration in premature infants during hospitalization.
作者
黄晓波
韦琴
杨朝霞
梁洁
文燕
HUANG Xiao-bo;WEI Qin;YANG Zhao-xia;LIANG Je;WEN Yan(Guangxi Medical University,Nanning 530021,China;Department of Nursing;Department of Neonatology,the First Affiliated Hospital of Guangxi Medical University,Nanning 530021,China)
出处
《广西医学》
CAS
2018年第8期882-885,共4页
Guangxi Medical Journal
基金
广西自然科学基金(2016GXNSFAA380265)
广西医药卫生科研课题(Z2016360)
关键词
早产儿
出生胎龄
出生体重
新生儿早期预警评分
病情恶化
Premature infant
Gestational age
Birth weight
Newborn early warning score
Disease deterioration