期刊文献+

基于模糊度量视觉特征的非局部均值去噪 被引量:6

Improved non-local means image denoising algorithm using visual features based on fuzzy metric
下载PDF
导出
摘要 针对非局部均值(non local mean,NLM)相似性度量不够准确的问题,提出一种基于模糊度量的视觉特征相似度的改进非局部均值图像去噪算法。利用模糊度量理论构建视觉特征度量相似性函数作为衡量图像像素点相似性;将平滑核函数代替高斯加权核函数,提高运算速度和避免滤波参数的设置;利用构建视觉特征相似性度量生成的平滑核函数,对图像进行去噪。由于改进方法考虑图像视觉结构特征,更加完善了非局部均值结构相似的特点。在高斯噪声和椒盐噪声下,用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity index,SSIM)评价指标分别对比分析提出方法与几种优秀的改进NLM方法的降噪性能。实验结果表明,改进的新方法在去噪性能方面得到较高的提升,同时降低了相似度计算的复杂度和减少了参数设置问题。 Given the problem that the measurement of non local mean is not accurate enough,an improved NLM image de-noising algorithm is proposed,which uses visual features based on fuzzy metric as measure similarity. Measure similarity in-dex is constructed by using the theory of fuzzy to measure the similarity between the image pixels. Then,instead of Gauss weighted kernel function,smooth kernel function is constructed by similarity index of visual feature,which can improve the operation speed and avoid the filter parameters. Finally,NLM with the smoothing kernel function and the similarity measure of visual feature is used to denoise the image. Due to the fact that the improved method considers the characteristics of image visual structure,the structure similarity of NLM is further improved. The improved method in this paper is compared with sev-eral excellent improved NLM methods by peak signal to noise ratio(PSNR) and structural similarity index(SSIM) evaluation indexes under the Gaussian noise and salt & pepper noise. Experimental results show that the improved method has better per-formance in denoising,and reduces the complexity of the similarity computation and the problem of parameters setting.
作者 吕俊瑞 罗学刚 岐世峰 彭真明 LV Junrui1,LUO Xuegang1,2,QI Shifeng1,PENG Zhenming2(1.School of Mathematics and Computer Science,Panzhihua University,Panzhihua 617000,P.R.China;2.School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 610054,P.R.Chin)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2018年第3期408-415,共8页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(61775030 61571096) 四川省教育厅科学研究项目(15ZB0425) 中国科学院光束控制重点实验室基金(2017LBC003)~~
关键词 非局部均值 图像去噪 视觉特征相似度 模糊度量 non-local means algorithm image denoising visual similarity fuzzy metric
  • 相关文献

参考文献4

二级参考文献54

  • 1汪西莉,焦李成.一种基于马氏距离的支持向量快速提取算法[J].西安电子科技大学学报,2004,31(4):639-643. 被引量:21
  • 2李玉榕,项国波.一种基于马氏距离的线性判别分析分类算法[J].计算机仿真,2006,23(8):86-88. 被引量:46
  • 3余金鸿,贾振红,山拜.达拉拜.几类非高斯噪声的模型分析[J].新疆大学学报(自然科学版),2006,23(4):467-470. 被引量:3
  • 4BUADES A, COLL B, MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530. 被引量:1
  • 5ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736- 3745. 被引量:1
  • 6ORCHARD J, EBRAHIMI M, WONG A. Efficient nonlocal-means denoising using the SVD[C]llProceedings of IEEE International Conference on Image Processing. San Diego, California: IEEE Signal Processing Society, 2008: 1732-1735. 被引量:1
  • 7TASDIZEN T. Principal components for nonlocal-means image denoising[C]llProceedings of IEEE International Conference on Image Processing. San Diego, California: IEEE Signal Processing Society, 2008: 1728-1731. 被引量:1
  • 8ZHANG L, DONG W, ZHANG D, et al. Two-stage image denoising by principal component analysis with local pixel grouping[J]. Pattern Recognition, 2010(43): 1531-1549. 被引量:1
  • 9VAN DE VILLE D, KOCHER M. Nonlocal means with dimensionality reduction and SURE-based parameter selection[J]. IEEE Transactions on Image Processing, 2011, 20(9): 2683-2690. 被引量:1
  • 10VAN DEVILLE D, KOCHER M. SURE-based nonlocal-means[J]. Signal Processing Letters, 2009, 16(11): 973-976. 被引量:1

共引文献28

同被引文献62

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部