期刊文献+

基于亚像素的PCB表面质量检测 被引量:1

Surface Quality Inspection of PCB Based on Subpix
下载PDF
导出
摘要 为提高PCB的测量精度及缺陷识别率,针对不同类型的边缘,设计了亚像素边缘定位拟合模型,实现了PCB光板上导线及焊盘的亚像素级边缘检测。在此基础上,设计了神经网络分类器,提取PCB光板上导线及焊盘的特征作为输入,通过网络训练,构建了用于缺陷检测的MLP神经网络模型。测试实验表明,亚像素边缘检测方法可使PCB光板图像的测量精度进一步提高;神经网络分类器可有效识别和分类PCB光板表面常见的缺陷。 In order to improve the measuring accuracy of electronic circuit board and defect recognition rate,a subpixeledge location fitting model was designed according to different types of edge,which implemented subpixeledge detection of wires and solder on bare PCB board.Further more,neural network classifier was designed,and the characteristics of the wire and welding disk on the PCB plate were extracted as input,and the MLP neural network model for defect detection was constructed by training.The test results show that the measurement accuracy of PCB image is further improved by subpixeledge detection method.And neural network classifier can effectively realize the recognition and classification of common defects on PCB surface.
作者 郭联金 谢跃信 罗炳军 Guo Lian-jin1,Xie Yue-xin1,Luo Bing-jun22(1.Department of electrical and Mechanical Engineering,Dongguan Vocational and Technical College,Guangdong Dongguan 523808;2.GreatSense Automatic In-strument Co.,LTD,Guangdong Guangzhou 51066)
出处 《电子质量》 2018年第6期8-13,共6页 Electronics Quality
基金 2017年东莞市社会科技发展项目(2017507156392) 广东省教育厅2017年度科研平台和科研项目(2017GGXJK098) 2017年广东大学生科技创新培育项目(pdjh2017b0801 pdjh2017b0804)
关键词 PCB 亚像素 边缘检测 神经网络 PCB subpixel edge detection neural network
  • 相关文献

参考文献12

二级参考文献70

共引文献70

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部