摘要
本文研究了一类高阶多点边值问题的数值解法问题.利用第二类Chebyhsev小波及其积分算子矩阵,将线性与非线性高阶常微分方程多点边值问题转化为代数方程组进行求解.通过与现有文献算法结果的比较,说明了该算法求解高阶多点边值问题的准确性与有效性.扩展了高阶多点边值问题的数值求解方法.
In this paper, a numerical algorithm is concerned for solving approximate solutions of high-order multi-point boundary value problems. The second kind Chebyhsev wavelets and operational matrix of integration are used to convert multi-point linear and nonlinear ordinary differential equation to a system of algebraic equations. By comparing with the results of the existing literature, the accuracy and validity of the algorithm for solving the high-order multi-point boundary value problem are explained. The proposed method extends the numerical solution of higher-order multi-point boundary value problems.
作者
周凤英
许小勇
ZHOU Feng-ying;XU Xiao-yong(School of Science,East China University of Technology,Nanchang 330013,China)
出处
《数学杂志》
2018年第4期619-632,共14页
Journal of Mathematics
基金
Supported by the National Natural Science Foundation of China(11601076)
the Youth Science Foundation of Jiangxi Province(20151BAB211004
20151BAB211012)
关键词
第二类Chebyshev小波
积分算子矩阵
高阶微分方程
多点边值问题
配点法
the second kind Chebyshev wavelets
operational matrix of integration
high-order differential equation
nmlti-point boundary value problem
collocation method