摘要
为研究大纵坡钢桥面铺装层底剪应力计算方法,首先基于ABAQUS软件构建了钢桥面铺装局部三维有限元模型,用以计算铺装层剪应力大小。然后,采用正交设计法和多元回归方法得出大纵坡钢桥面铺装层底最大纵向剪应力回归公式,并对其精度加以验证,同时分析了回归公式中各参数对铺装层底最大纵向剪应力的影响。最后,进一步回归了紧急制动时层底最大纵向剪应力计算公式,并以仁皇山大桥工程为例加以验证。结果表明,大纵坡钢桥面铺装层底最大纵向剪应力随纵坡、铺装层模量和U肋宽度的增大而增大,随钢板厚度和横隔板间距的增大而减小。在大纵坡钢桥面铺装设计中,可通过减小纵坡、铺装层模量、U肋宽度或增大钢板厚度、横隔板间距来减小铺装层底最大剪应力,从而提升铺装层界面的安全性。
In order to calculate shear stress at the bottom of large longitudinal slope steel deck pavement,firstly a three-dimensional finite element model of steel deck pavement was built to calculate shear stressof deck pavement based on ABAQUS software. Then, based on orthogonal design method and multiple regression method, a calculation formula of maximum longitudinal shear stress at the bottom of deck pavement was regressed. The accuracy of the regression formula was verified, and the influence of parametersin regression formula on the maximum longitudinal shear stress was analyzed. Finally, the maximum longitudinal shear stress at the bottom of steel deck pavement under emergency braking was regressed. The calculation example of Renhuangshan bridge project was given. The results show that the maximum longitudinal shear stress at the bottom of large longitudinal slope steel deck pavement increases with the increasing of longitudinal slope, modulus of deck pavement and width of U rib. However, it decreases with the increasing of steel plate thickness and diaphragm space. In the design of large longitudinal slope steeldeck pavement, the interface security can be improved by reducing longitudinal slope, modulus of deckpavement or width of U rib; by increasing steel plate thickness or diaphragm spacing appropriately.
作者
裘志坤
张超
陈小兵
周建珠
徐利彬
QIU Zhi-kun1, ZHANG Chao1, CHEN Xiao-bing2, ZHOU Jian-zhu1, XU Li-bin2(1. Huzhou Urban Construction Investment Group Co., Ltd., Huzhou 313099, China; 2. School of Transportation, Southeast University, Nanjing 210096, China)
出处
《交通运输研究》
2018年第2期58-65,共8页
Transport Research
基金
国家自然科学基金面上项目(51778142)
关键词
道路工程
大纵坡
钢桥面铺装
剪应力
有限元
road engineering
large longitudinal slope
steel deck pavement
shear stress
finite element method