期刊文献+

基于不平衡学习的集成极限学习机污水处理故障诊断 被引量:9

Ensemble WELM method for imbalanced learning in fault diagnosis of wastewater treatment process
下载PDF
导出
摘要 污水处理过程的故障诊断数据具有高度不平衡性,影响了故障诊断效果,尤其是降低故障类别的识别正确率,导致出水水质不达标、运行费用增高和环境二次污染等问题出现。据此提出一种基于加权极限学习机集成算法的污水处理故障诊断建模方法。该方法将不平衡分类评价指标G-mean引入以加权极限学习机为基分类器的Ada Boost集成分类模型,定义新的基分类器初始权值矩阵更新规则和集成权重计算公式,用于基分类器的迭代学习。由仿真实验结果可知,基于加权极限学习机集成算法的污水处理故障诊断模型,可有效提高分类性能G-mean值和整体分类精度,特别提高了故障类的识别正确率,验证了基于加权极限学习机的集成算法在不平衡性污水处理故障诊断问题上的有效性。 Highly imbalanced data for fault diagnosis in wastewater treatment process seriously affects fault diagnosis performance, especially in identification of faulty classes. Reduced recognition accuracies of faulty classes may lead to occurrence of other issues, such as failure to reach quality standard of effluent water, high operation cost and secondary pollution. An ensemble weighted extreme learning machine method (WELM) for imbalanced learning was proposed for fault diagnosis modeling in wastewater treatment process. AdaBoost ensemble classification algorithm based on WELM base classifiers was integrated into assessment index G-mean of imbalanced classification. New updating rules for initial weight matrix in the base classifiers and ensemble weight formula were defined for iterative learning of the base classifiers. Simulation results show that this fault diagnosis model of wastewater treatment process can improve classification performance, such as G-mean value, overall classification precision, and recognition accuracy of faulty classes. The proposed method is effective in imbalanced fault diagnosis of wastewater treatment process.
作者 许玉格 孙称立 赖春伶 罗飞 XU Yuge;SUN Chengli;LAI Chunling;LUO Fei(School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2018年第7期3114-3124,共11页 CIESC Journal
基金 国家自然科学基金项目(61473121) 广东省科技计划项目(2016A020221008 2017B010117007 2017B090910011)~~
关键词 加权极限学习机 AdaBoost集成算法 不平衡学习 污水处理 故障诊断 模型 weighted extreme learning machine AdaBoost ensemble algorithm imbalanced learning wastewater treatment fault diagnosis modeling
  • 相关文献

参考文献9

二级参考文献37

  • 1范昕炜,杜树新,吴铁军.粗SVM分类方法及其在污水处理过程中的应用[J].控制与决策,2004,19(5):573-576. 被引量:15
  • 2苏建元,孙蔚,孙薇,叶海涛.基于神经网络和模糊逻辑的工业过程故障诊断与报警系统[J].动力学与控制学报,2006,4(3):284-288. 被引量:5
  • 3LEE J M, YOO C K, CHOI S W, et al. Nonlinear process mon- itoring using kernel principal component analysis [ J ]. Chemical Engineering Science, 2004, 59(1 ) : 223 - 234. 被引量:1
  • 4YUAN S F, CHU F L. Support vector machines-based fault diagnosis for turbo-pump rotor[ J ]. Mechanical Systems and Signal Processing, 2006, 20(4) : 939 - 952. 被引量:1
  • 5VAPNIK V. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995. 被引量:1
  • 6PUNAL A, ROCA E, LEMA J M. An expert system for monitoring and diagnosis of anaerobic wastewater treatment plants[J]. Water Research, 2002, 36(10) : 2656 - 2666. 被引量:1
  • 7ALBAZZAZ H, WANG X Z, MARHOON F. Multidimensional visua, lisation for process historical data analysis a comparative study with multivariate statistical process control [ J ]. Journal of Process Control, 2005, 15(3) : 285 - 294. 被引量:1
  • 8LEE J M, YOO C K, LEE I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Con- trol, 2004, 14(5), 467- 485. 被引量:1
  • 9Gustafsson F. Statistical signal processing approaches to fault detection [J]. Annual Reviews in Control, 2007, 31 (1): 41-54. 被引量:1
  • 10Corona F, Mulas M, Haimi H, Stmdell L, Heinonen M, Vahala R. Monitoring nitrate concentrations in the denitrifying post-filtration unit of a municipal wastewater treatment plant [J]. Journal of Process Control, 2013, 23(2): 158-170. 被引量:1

共引文献39

同被引文献84

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部