期刊文献+

结合局部方差信息的各向异性扩散图像去噪算法研究 被引量:1

Anisotropic Diffusion Algorithm Combined with Local Variance Information for the Research of Image Denoising
下载PDF
导出
摘要 针对各向异性扩散算法容易模糊图像细节和边缘以及去噪不彻底的问题,通过局部方差信息调整参数将LCC扩散函数与ECU扩散函数相结合,综合利用图像局部方差描述的局部区域信息和梯度信息,提出了一种结合局部方差信息的各向异性扩散模型。该模型不仅同时依赖局部方差信息和梯度信息,而且能够在不同性质区域根据局部方差信息调整参数适时地调整LCC扩散函数与ECU扩散函数扩散速度,充分利用LCC扩散函数和ECU扩散函数的优势。实验结果表明,该模型与其它几种经典算法相比,不仅能够有效地去除噪声、保持图像弱边缘,而且对图像的细节保持也有较好的效果。 In view of the problem that anisotropic diffusion algorithm easily blurred image details and edges and denoising of incomplete,combining the LCC diffusion function with ECU diffusion function by using local variance information adjustment parameters and comprehensively utilization of local information described by local variance and gradient information,this paper proposes an anisotropic diffusion algorithm combined with local variance information. The model not only depends on the local variance and gradient information at the same time,but also in different area can timely adjusts diffusion velocity of LCC diffusion function and ECU diffusion function according to the local variance information adjustment parameters,making full use of the advantage of LCC diffusion function and ECU diffusion function. The experimental results show that compared with several other classical algorithms,the model not only can effectively remove the noise and preserving the image edge,but also to keep the details of image also has a better effect.
作者 吴龙华 洪志强 闫晓天 WU Longhua;HONG Zhiqiang;YAN Xiaotian(Think Tank Surveying and Planning Company of Jiangxi,330013,Nanchang,PRC;Nanchang Institute of Science & Technology,330108,Nanchang,PRC)
出处 《江西科学》 2018年第3期500-505,共6页 Jiangxi Science
基金 江西省自然科学基金项目(20161BAB203102) 江西省教育厅科学技术研究重点项目(GJJ150555)
关键词 各向异性扩散 局部方差信息 图像去噪 调整参数 扩散系数 anisotropic spread local variance information images denoising adjustment parameter diffusion coefficient
  • 相关文献

参考文献7

二级参考文献79

  • 1王炳健,刘上乾,周慧鑫,李庆.基于平台直方图的红外图像自适应增强算法[J].光子学报,2005,34(2):299-301. 被引量:101
  • 2王超,叶中付.基于变分的图像增强算法和伪彩色映射[J].数据采集与处理,2005,20(1):18-22. 被引量:8
  • 3朱立新,欧阳晓丽,夏德深.基于伪线性方向扩散方程的指纹图像增强[J].模式识别与人工智能,2006,19(6):806-811. 被引量:5
  • 4Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Trans Pattern Anal Machine lntell (S0162-8828), 1990, 12(7): 629-639. 被引量:1
  • 5Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion 11 [J]. SIAM d Numer Anal(S0036-1429), 1992, 29(3): 845-866. 被引量:1
  • 6Catte F, Lions P L, Morel J M, et al. Image selective smoothing and edge detection by nonlinear difthsion [J], SIAM J Numer Anal(S0036-1429), 1992, 29(1): 182-193. 被引量:1
  • 7Aja-Femandez S, Vegas-Sanchez-Ferrero G, Martin-Fernandez M, et al. Automatic noise estimation in images using local statistics. Additive and multiplicative cases [J]. Image and vision computing (S0262-8856), 2009, 27(6): 756-770. 被引量:1
  • 8Manay S, Yezzi A. Anti-geometric diffusion for adaptive thresholding and fast segmentation [J]. IEEE Trans Image Process (S1057-7149), 2003, 12(ll): 1310-1323. 被引量:1
  • 9Krissian K, Westin C F, Kikinis R, et al. Oriented speckle reducing anisotropic diffusion [J]. IEEE Trans, Image Process (S1057-7149), 2007, 16(5): 1412-1424. 被引量:1
  • 10Yu Y, Acton S T. Speckle reducing anisotropic diffusion [J]. IEEE Trans Image Process(S1057-7149), 2002, 11(11): 1260-1270. 被引量:1

共引文献56

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部