期刊文献+

基于压缩感知的WSN信息收集与恢复 被引量:1

Information Collection and Recovery in WSN Based on Compressed Sensing
下载PDF
导出
摘要 无线传感器网络(WSN)具有应用灵活和信息感知有效的特点。压缩传感(CS)将采样与压缩过程进行合并,可以降低信号采样频率,节省存储和传输成本。为将CS理论有效应用到WSN中,提出一种基于时空相关性的块压缩感知全局重构算法BCS-STGR。研究常见测量矩阵的性能并优化WSN的拓扑结构,利用扩散小波对网络进行切分后在每个子网中独立进行数据聚集,最终由选定的中心节点将数据传输给sink接收端。仿真结果表明,BCS-STGR算法的归一化平均绝对误差小于5%,优于传统CS算法和基于时空相关性的分块重构算法。 Wireless Sensor Network( WSN) has the characteristics of flexible application and effective information perception. Compressed Sensing( CS) combines sampling and compression process to reduce signal sampling frequency and save storage and transmission cost. In order to effectively apply CS theory to WSN,a block compressed sensing global reconstruction algorithm named BCS-STGR based on spatio-temporal correlation is proposed. The performance of the common measurement matrix is studied,the topology of the WSN is optimized,the network is divided by the diffusion wavelet, and the data is gathered independently in each subnet,and the data is transmitted to the sink receiver by the selected central node. Simulation results show that the normalized mean absolute error of BCS-STGR algorithm is less than 5%,which is much better than the traditional CS algorithm and the block reconstruction algorithm based on spatiotemporal correlation.
作者 李伊青 崔浩 甘小莺 安然 洪峰 夏丽芳 LI Yiqing;CUI Hao;GAN Xiaoyingl;AN Ran;HONG Feng;XIA Lifang(School of Electronic Information and Electrical Engineering,Shanghai Jiaotong University,Shanghai 200240,China;Shanghai Huangdou Networks Technology Co.,Ltd.,Shanghai 200240,China;Shanghai Feixun Data Communications Technology Co.,Ltd.,Shanghai 200240,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第7期91-97,共7页 Computer Engineering
基金 国家自然科学基金"面向社交网络的无线资源管理机制研究"(61672342) 国家自然科学基金"物联网绿色节能理论与关键技术"(61532012)
关键词 压缩感知 无线传感器网络 测量矩阵 时空相关性 重构算法 Compressed Sensing ( CS ) Wireless Sensor Network (WSN) measurement matrix spatio-temporalcorrelation reconstruction algorithm
  • 相关文献

参考文献5

二级参考文献34

  • 1Candes E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 2Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 3Candes E and Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions [J]. Foundations of Compute Mathematics, 2006, 6(2): 227-254. 被引量:1
  • 4Ji S, Xue Y, and Carin L. Bayesian compressive sensing [J]. IEEE Transactions on Signal Processing, 2008, 56(6):2346-2356. 被引量:1
  • 5Seeger M W. Bayesian inference and optimal design for the sparse linear model [J]. Journal of Machine Learning Research, 2008, 9(4): 759-813. 被引量:1
  • 6Gupta H, Navda V, and Chowdhary V. Efficient gathering of correlated data in sensor networks [J]. A CM Transactions on Sensor Networks, 2008, 4(1): 4-34. 被引量:1
  • 7Johnsen K, Rogers A, and Jennings N R. Decentralized control of adaptive sampling in wireless sensor networks [J]. A CM Transactions on Sensor Networks, 2009, 5(3): 19-52. 被引量:1
  • 8Muttreja A, Raghunathan A, Ravi S, et al.. Active learning driven data acquisition for sensor networks [C]. IEEE Symposium on Computers and Communications, Caliari, 2006: 929-934. 被引量:1
  • 9Chun Tung Chou, Rana R, and Wen Hu. Energy efficient information collection in wireless sensor networks using adaptive compressive sensing [C]. Local Computer Networks, Zurich. 2009: 443-450. 被引量:1
  • 10Quer G, Masiero R, Munaretto D, et al. On the interplay between routing and signal representation for compressive sensing in wireless sensor networks [C]. Information Theory and Applications Workshop, San Diego, 2009:206-215. 被引量:1

共引文献37

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部