期刊文献+

基于模糊逻辑的手臂运动控制小脑模型与仿真

A Cerebellar Model and Simulation of Arm Motion Control Based on Fuzzy Logic
下载PDF
导出
摘要 当前具有生物学控制意义的小脑模型只着重于解决小脑内部的控制机理,而没有具体说明输入模块的工作情况。为了使当前的小脑模型更加完整,基于模糊控制理论和认知小脑模型进行分析,在引入模糊集合概念的基础上,通过将小脑模型与模糊理论相结合,提出了一种用于机械臂运动控制的模糊小脑模型。该模型在小脑模型的输入层引入模糊集合的隶属度概念来更加准确地反映客观世界,它不仅能够像仿生小脑模型一样,通过多次学习,对手臂进行轨迹控制,而且具有更高的完整度。首先对构建新模型所需的认知小脑进行了简单介绍,然后对模糊系统进行了相应的研究,并且构建了新的模型,也就是模糊小脑模型。接着研究了新模型所需的各种映射算法,最后利用MATLAB平台进行了相应的仿真实验。实验结果表明,提出的新模型在几次学习之后,也能像认知小脑模型一样准确地对手臂进行控制,而且具有更高的控制精度。 Currently,cerebellar models with biological significance focus only on the control mechanism within the cerebellum rather than the operation of the input module.In order to make the cerebellar model more complete,we analyze the fuzzy control theory and cognitive cerebellar model.At the same time,we introduce the concept of fuzzy set and propose a fuzzy cerebellar model for robotic manipulator control by combining the cerebellar model with the fuzzy theory.The membership degree of fuzzy set has been introduced into the input layer of cerebellar model to reflect the objective world more accurately.It can move the arm along a specific path like a bionic cerebellar model after learning several times with higher integrity.We firstly introduce the cognitive cerebellum needed to construct the newmodel,and then study the fuzzy system and construct a newmodel which is the fuzzy cerebellar model. Then,the various mapping algorithms needed for the newmodel are studied.Finally,the corresponding simulation experiments are carried out on the MATLAB platform.The experiment shows that the newmodel can control the arm exactly like the cognitive cerebellar model after several studies with higher control accuracy.
作者 张少白 诸明倩 ZHANG Shao-bai;ZHU Ming-qian(School of Computer,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《计算机技术与发展》 2018年第7期15-20,共6页 Computer Technology and Development
基金 国家自然科学基金(61271334 61373065)
关键词 认知小脑模型 模糊逻辑 映射算法 手臂控制 cognitive cerebellar model fuzzy logic mapping algorithm arm control
  • 相关文献

参考文献2

二级参考文献15

  • 1阮晓钢,张少白,李欣源.仿生机械臂的小脑控制模型和仿真[J].电子学报,2007,35(5):991-995. 被引量:7
  • 2Webb B. Can robots make good models of biological behavior?[J]. Behavioral and Brain Sciences, 2001, 24(6): 1033-1050. 被引量:1
  • 3Zhang Shao-bai, Cheng Wei-qing, and Cheng Xie-feng. An application of cerebellar control model for prehension movements[J]. Neural Computing & Application, 2014, 24(5): 1059-1066. 被引量:1
  • 4Hoff B and Arbib M A. Models of trajectory formation and temporal interaction of reach and grasp[J]. Journal of Motor Behavior, 1993, 25(3): 175-192. 被引量:1
  • 5Kawato M, Kuroda S, and Schweighofer N. Cerebellar internal models:implications for dexterous use of tools[J]. The Cerebellum, 2012, 11(2): 325-335. 被引量:1
  • 6Jaeger D. Cerebellar Nuclei and Cerebellar Learning[M]. New York: USA, Handbook of the Cerebellum and Cerebellar Disorders, 2013, 4: 1111-1130. 被引量:1
  • 7Townsend B R and Subasi E. Grasp movement decoding from premotor and parietal cortex[J]. The Journal of Neuroscience, 2011, 31(40): 14386-14398. 被引量:1
  • 8Bruno B and Peter E. Neural correlations, population coding and computation[J]. Nature Reviews Neuroscience , 2006, 7: 358-366. 被引量:1
  • 9Kawato M, Masa-aki Sato, Taku Yoshioka. Hierarchical Bayesian estimation for MEG inverse problem[J]. NeuroImage, 2004, 23(3): 806-826. 被引量:1
  • 10Saling M, Mescheriakov S, Molokanova E, et al.. Grip reorganization during wrist transport: the influence of analtered aperture[J]. Experimental Brain Research, 1996, 108(3): 493-500. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部