期刊文献+

基于局部限定搜索区域的特征匹配算法 被引量:1

Feature matching algorithm based on partial limitation search region
下载PDF
导出
摘要 提出一种局部限定搜索区域的特征匹配算法,将空间约束与局部描述符结合起来。该算法在ASIFT算法基础之上,针对在特征匹配阶段直接去除一对多、多对一的特征点的缺陷做出了改进。由于这些被去掉的特征点中有很多是可以得到正确匹配的,导致获得到的匹配点对少了很多,通过在已经匹配的点对的周围限定区域内寻找出新的未曾匹配的点对,最终达到提升正确匹配数量的目标。经实验验证,所提出的局部限定搜索区域的特征匹配算法相比于ASIFT算法能大量增加特征匹配点的数量。 This paper proposes a feature matching algorithm for partial limitation search regions, which combines spatial constraints with local descriptors. Based on the ASIFT algorithm, this paper improves the defects of directly removing one-to-many and many-to-one feature points in the feature matching phase. Since many of these removed feature points can be properly matched, resulting match points less. This paper will find a new unmatched pair of points within the surrounding area of the matching pairs, and fi-nally achieve the goal of raising the correct number of matches. Experiments show that the feature matching algorithm proposed in this paper can greatly increase the number of feature matching compared with the ASIFT algorithm.
作者 张振宁 李征 郑俊伟 Zhang Zhenning;Li Zheng;Zheng Junwei(College of Computer Science,Sichuan University,Chengdu 610065,China)
出处 《电子技术应用》 2018年第8期130-133,142,共5页 Application of Electronic Technique
基金 国家自然科学基金项目(61471250)
关键词 局部限定 ASIFT 特征匹配 partial limitation ASIFT teature matching
  • 相关文献

参考文献2

二级参考文献17

  • 1LOWED. Object recognition from local scale-invariant features[C]. In: Proceedings of the 7th IEEE International Conference on Computer Vision, Corfu,US: IEEE, 1999: 1150-1157. 被引量:1
  • 2LOWE D G. Distinctive image features from scale-invari- ant keypoints[J]. International Journal of Computer Vision, 2004,60(2) :91-110. 被引量:1
  • 3Zhao Wanglei, NGO C W. Flip-invariant SIFT for copy and object detection[J]. Image Processing, IEEE, 2013,22 (3):980-991. 被引量:1
  • 4JUAN L,GWUN O. A comparison of SIFT, PCA-SIFT and SURF[J]. International Journal of Image Processing (IJIP), 2009,3(4): 143-152. 被引量:1
  • 5BAY H,ESS A,TUYTELAARS T,et al. Speeded up robust features(SURF)[J].Computer Vision and Image Understand- ing(CVIU), 2008,110(3): 346-359. 被引量:1
  • 6OZUYSAL M, CALONDER M, LEPETIT V, et al. Fast keypoint recognition using random ferns[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence,2010, 32(3) : 448-461. 被引量:1
  • 7MOREL J M, YU G S. ASIFT: a new framework for fully affine invariant image comparison[J]. SIAM Journal on Im- age Sciences, 2009,2(2):438-469. 被引量:1
  • 8MATAS J, CHUM O, URBAN M, et al. Robust wide- baseline stereo from maximally stable extremal regions[J]. Image and Vision Computing, 2004,22(10) : 761-767. 被引量:1
  • 9FISCHLER M A,BOLLES R C. Random sample consen- sus:A paradigm for model fitting with applications to im- age analysis and automated cartography[J].Communications of the ACM, 1981 , 24(6) : 381-395. 被引量:1
  • 10MORTANI M,SATIONH F.Image template matching based on ratio of mean and central pixel in local area[J].Proceedings of the SPIE The International Society for Optical Engineering,2007,67(94):1-6. 被引量:1

共引文献7

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部