期刊文献+

基于主题流与深度学习的情感分析算法 被引量:1

Sentiment Analysis Algorithm Based on Topic Flow and Deep Learning
下载PDF
导出
摘要 基于机器学习的情感分类方法已经取得了较大进展,但在大量情感分类方法中,往往都是结合词嵌入和传统的机器学习方法,缺乏对文本主题以及时序关系等因素的有效利用。针对上述问题,提出了一种基于主题流与深度学习的情感分类算法,通过分析文本的主题分布,并引入时序关系,在此基础上利用适合的长短记忆神经网络的深度学习方法进行情感分类。实验证明,基于主题流与深度学习的情感分类算法性能较好。 At present,sentiment classification method based on machine learning has made great progress,but among the a large number of sentiment classification methods,word combination and traditional machine learning methods are often used,and there is a lack of effective use of such factors as text topics and sequence relationships in a large number of sentiment classification methods.In order to solve the problems,this paper presents a sentiment classification algorithm based on topic flow and deep learning,it analyzes the topic distribution of the text and introduces the sequence relationship and uses deep learning methods such as long short-term memory neural networks to classify the sentiment.Experiments show that the sentiment classification algorithm based on topic stream and deep learning proposed in this paper has better performance.
作者 刘纳 王新 LIU Na 1,WANG Xin 2(1.College of Computer Science and Engineering,Shandong University of Science and Technology,Tsingtao266590; 2.Jinan Software Research Institute,China United Network Communications Limited,Jinan 250199,Chin)
出处 《软件导刊》 2018年第8期28-30,34,共4页 Software Guide
关键词 NLP 情感分析 深度学习 主题流 NLP sentiment analysis deep learning topic flow
  • 相关文献

参考文献6

二级参考文献82

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2Franco Salvetti, Stephen Lewis, Christoph Reichenbach. Automatic Opinion Polarity Classification of Movie Reviews[J]. Colorado Research in Linguistics, 2004, Volume 17, Issue 1. 被引量:1
  • 3Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 79 86. 被引量:1
  • 4Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Genre classification and domain transfer for information filtering[A]. In: Fabio Crestani, Mark Girolami, and Cornelis J. van Rijsbergen, editors, Proceedings of ECIR-02, 24th European Colloquium on Information Retrieval Research, Glasgow, UK. Springer Verlag, Heidelberg, DE. 被引量:1
  • 5Janyce Wiebe, Rebecca Bruce, Matthew Bell, Melanie Martin, and Theresa Wilson. A corpus study of evaluative and speculative language[A]. In: Proceedings of the 2nd ACL SIGdial Workshop on Discourse and Dialogue, 2001. 被引量:1
  • 6Alina Andreevskaia and Sabine Bergler. Mining Word-Net For a Fuzzy Sentiment: Sentiment Tag Extraction From WordNet Glosses[A].In: Proc. EACL-06, Trento, Italy, 2006. 被引量:1
  • 7Alistair Kennedy and Diana Inkpen. Sentiment Classification of Movie Reviews Using Contextual Valence Shifters[J]. Computational Intelligence, 2006,22 (2) 110-125. 被引量:1
  • 8P.D. Turney and M.L. Littman. Unsupervised learning of semantic orientation from a hundred-billion-word corpus[D]. Technical Report ERB-1094, National Research Council Canada, Institute for Information Technology, 2002. 被引量:1
  • 9P. Subasic and A. Huettner. Affect analysis of text using fuzzy semantic typing[A]. IEEE-FS, 9:483 496, Aug. 2001. 被引量:1
  • 10Hugo Liu, Henry Lieberman, and Ted Selker. A model of textual affect sensing using real-world knowl- edge[A]. In: Proceedings of the Seventh International Conference on Intelligent User Interfaces [C].2003. 125-132. 被引量:1

共引文献299

同被引文献12

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部