期刊文献+

复杂背景弱小目标检测技术

Detection Technology of Small Target in Complex Background
下载PDF
导出
摘要 本文主要研究论文复杂背景弱小目标检测技术,通过弱目标的提取技术,时空域融合的背景抑制增强滤波技术,可以有效排除杂波干扰,减小背景抑制难度,使目标的搜索跟踪更加准确。本文主要创新点是基于时空域融合滤波的模块化并行背景抑制算法和简化的云层边缘虚景剔除方法,更加简单有效地完成弱小目标检测。 This text mainly studies the detection technology of dim and small targets in complex background, by technique small target withdraws, extraction technology of target area that boundary between heaven and earth, withdraw technique of target district that the word hands over boundary, can effectively eliminate clutter interference, reduce the difficulty of background suppression,make target search and follow more accurate. This text main innovation order is calculate way of background repress proceed together model that timespace blend filter wave and simplify pick method of clouds edge deceitful alert, though these methods can more simple and valid complete examine what small and weak target.
作者 胡剑 Hu Jian(Guilin University of Electronic Technology,Guangxi,Guilin,541004,China;Liuzhou Changhong Aerospace Technology CO.,Guangxi,Liuzhou,545012,China)
出处 《仪器仪表用户》 2018年第8期13-15,共3页 Instrumentation
关键词 目标检测 目标提取 滤波技术 object detection target extraction technique of filter
  • 相关文献

参考文献3

二级参考文献21

  • 1崔鹏程,王江安,马治国,翁平.水天线附近红外弱点目标的检测[J].光学与光电技术,2003,1(1):47-49. 被引量:4
  • 2陈朝阳,洪功存,沈绪榜,郑兆青.FIFO在多级滤波图像处理ASIC芯片中的设计应用[J].红外与激光工程,2005,34(3):348-351. 被引量:3
  • 3陈朝阳,孙剑伟,郑兆青,张天序.多级滤波算法的ASIC实现[J].华中科技大学学报(自然科学版),2006,34(2):4-7. 被引量:3
  • 4Desimone R, Duncan J. Neural mechanisms of selective visual attention[J]. Annual Review of Neuroscience, 1995, 18(1): 193-222. 被引量:1
  • 5Han J H. Ma Y. Zhon B, et al. A robust infrared small target detection algorithm based on human visual system[J]. IEEE (,eoscience Remote Sensing l,etters, 2014, 11 (12): 2168-2172. 被引量:1
  • 6Sun J, Chen R. He J. A Modified GBVS Method with Entropy for Extracting Bottom-up Attenlion Information[M]. tteidelherg: Springer, 2012: 765-770. 被引量:1
  • 7Hansen I, K. Karadogan S, Marehegiani L. What to measure next Io improve decision making? On top-down task driven feature saliency [C]. Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), Symposium on. IEEE, 2011: 1-7. 被引量:1
  • 8Balueh F, hti I,. Meehanisms of top-down attention[J]. Trends in Neurosciences, 2011, 34(4): 210-224. 被引量:1
  • 9Koch C, Ulhnan S. Shifts In Selective Visual Attention: Towards the Underlying Neural Circuitry[M]. Netherlands: Springer, 1987: 115-141. 被引量:1
  • 10llti I, Koch C, Niebur E. A model of salieney-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analvsis and Machine Intelligence, 1998, 20(11 ): 1254-1259. 被引量:1

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部