摘要
With the rapid urbanization, many high-rise buildings and new districts have been built continuously. However, the old town of cities has gradually been forgotten by people and its environment is becoming increasingly harsh. The old town usually has diversified space and function. As an important part of the old town, the street canyon that is closely related to human settlements is a public space where people communicate and do activities. Therefore, research on microclimate-based improvement of the street canyon in the old town is of great significance. Six typical street canyons in the White Stupa Temple area of Beijing were selected for research to explore spatial characteristics of the street canyon. Microclimate factors such as temperature, humidity, wind speed, and solar radiation were measured on the spot in summer. These factors were combined with two microclimate assessment indexes of physiological equivalent temperature(PET) and wet bulb globe temperature(WBGT) to evaluate the microclimate of the street canyon. In the analysis of the measured data, the mean value comparison method was used to analyze the average values of the microclimate factors in different time periods. Spatial layout of microclimate included the orientation of the canyon, the ratio of the canyon height to canyon width, and green coverage of the canyon, and an in-depth study was made on the coupling relationship between the spatial layout and the microclimate of the canyon. Research results can provide an optimization strategy for the transformation design of the street canyon in White Stupa Temple area, and provide a scientific reference for the research on spatial layout and microclimate improvement in the old town, so as to improve the living quality of residents in the old town.
With the rapid urbanization, many high-rise buildings and new districts have been built continuously. However, the old town of cities has gradually been forgotten by people and its environment is becoming increasingly harsh. The old town usually has diversified space and function. As an important part of the old town, the street canyon that is closely related to human settlements is a public space where people communicate and do activities. Therefore, research on microclimate-based improvement of the street canyon in the old town is of great significance. Six typical street canyons in the White Stupa Temple area of Beijing were selected for research to explore spatial characteristics of the street canyon. Microclimate factors such as temperature, humidity, wind speed, and solar radiation were measured on the spot in summer. These factors were combined with two microclimate assessment indexes of physiological equivalent temperature(PET) and wet bulb globe temperature(WBGT) to evaluate the microclimate of the street canyon. In the analysis of the measured data, the mean value comparison method was used to analyze the average values of the microclimate factors in different time periods. Spatial layout of microclimate included the orientation of the canyon, the ratio of the canyon height to canyon width, and green coverage of the canyon, and an in-depth study was made on the coupling relationship between the spatial layout and the microclimate of the canyon. Research results can provide an optimization strategy for the transformation design of the street canyon in White Stupa Temple area, and provide a scientific reference for the research on spatial layout and microclimate improvement in the old town, so as to improve the living quality of residents in the old town.
基金
Sponsored by National Natural Science Foundation of China(51508004)
Service Capacity Building of Scientific and Technological Innovation-Raising the Quota Level of Scientific Research-Research Institute of Building Systems(PXM2017_014212_000005)
Science and Technology Plans of the Ministry of Housing and Urban-Rural Development of the People’s Republic of China
Opening Projects of Beijing Advanced Innovation Center for Future Urban Design,Beijing University of Civil Engineering and Architecture(UDC2017030712)