期刊文献+

部分范数约束的稀疏恢复算法及其在单载波水声数据遥测中的应用 被引量:2

Partial-norm-constrained sparse recovery algorithm and its application on single carrier underwater-acoustic-data telemetry
下载PDF
导出
摘要 对于单载波水声数据压缩与恢复问题,压缩感知能以较低能耗获得信号压缩与恢复效果。但压缩感知核心目标是直接求最小l_0范数,该问题表现为NP难问题,因此,常将其转化为求l_1范数约束最小化问题,而求l_1范数约束最小化的稀疏解精度有限。基于此,推导出基于部分范数约束的稀疏信号恢复算法,该算法通过部分范数约束在拉格朗日求解中增加一个零吸引项,从而动态分配稀疏抽头的软阈值。同时,该算法用于实际海上数据的遥测,结合离散余弦变换(DCT),可将单载波水声数据恢复精度提高。 To solve the problem of single carrier underwater-acoustic-data telemetry, compressive sensing(CS) provides competitive performance of compression and recovery with low energy consumption. The primary objective of CS is to minimize the l0 norm, which is an NP hard problem. Hence, the common methods were transferred to minimize l1 norm. However, l1 norm minimization provided a limited accuracy. A partial-norm-constraint(PNC) based sparse signal recovery method was derived, which adopted PNC as a zero attraction in a Lagrange method, to distribute the soft threshold for the non-zero taps. The proposed method is used for at-sea data telemetry. Combining with DCT, the proposed method improves the recovery accuracy.
作者 伍飞云 杨坤德 童峰 WU Feiyun;YANG Kunde;TONG Feng(School of Marine Science and Technology,Northwestern Polytechnical University,Xi'an 710072,China;Key Laboratory of Ocean Acoustics and Sensing Ministry of Industry and Information Technology,Northwestern Polytechnical University,Xi'an 710072,China;Key Laboratory of Underwater Acoustic Communication and Marine Information Technique of the Ministry of Education,Xiamen University,Xiamen 361005,China)
出处 《通信学报》 EI CSCD 北大核心 2018年第6期127-132,共6页 Journal on Communications
基金 国家自然科学基金资助项目(No.61701405) 中央高校基本科研业务费专项资金资助项目(No.3102017OQD007) 中国博士后科学基金资助项目(No.2017M613208)~~
关键词 压缩感知 单载波水声数据 部分范数约束 compressive sensing single carrier underwater-acoustic-data partial-norm-constraint
  • 相关文献

参考文献2

二级参考文献29

  • 1张军.求解不适定问题的快速Landweber迭代法[J].数学杂志,2005,25(3):333-335. 被引量:6
  • 2Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306. 被引量:1
  • 3Baraniuk R G.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 4Blumensath T,Davies M.Iterative thresholding for sparse approximations[J].Journal of Fourier Analysis and Applications, 2008,14(5):629-654. 被引量:1
  • 5Blumensath T,Davies M.Iterative hard thresholding for compressed sensing[J].Applied and Computational Harmonic Analysis,2009,27(3):265-274. 被引量:1
  • 6Blumensath T,Davies M.Normalized iterative hard thresholding:guaranteed stability and performance[J]. IEEE Journal of Selected Topics in Signal Processing, 2010,4(2):298-309. 被引量:1
  • 7Bioucas Dias J M and Figueiredo M A T.A new TWIST: two-step iterative Shrinkage/Thresholding algorithm for image restoration[J].IEEE Transcations on Image Processing, 2007,16(12):2980-2991. 被引量:1
  • 8Ma J W.Improved iterative curvelet thresholding for compressed sensing.http:// www.dsp.ece.rice.edu/files/ cs/ISTcs2.pdf,Preprint,2009. 被引量:1
  • 9Blumensath,T.Accelerated Iterative Hard Thresholding. preprint,2011. 被引量:1
  • 10Neubauer A.On Landweber iteration for nonlinear illposed problems in Hilbert scales[J].Numer.Math. 2000,85(2):309-328. 被引量:1

共引文献20

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部