期刊文献+

大系统结构分解的评价准则和控制系统结构设计方法 被引量:6

Decomposition Evaluation Criteria and Control Structure Design of Large-Scale Systems
下载PDF
导出
摘要 化工过程作为高维大系统往往存在内部耦合,且通常某些部分内部耦合严重,而与其余部分耦合作用较小。高维大系统可以根据内部耦合强弱划分子系统,并以分块的方式进行块分散控制。随着维数增加,可能的子系统划分方式迅速增加。为了解决大系统子系统划分和控制系统结构设计问题,本文以结构矩阵作为大系统子系统划分和变量配对的数学描述,提出了大系统简易度和可控度的概念,并以简易度和可控度的加权和作为大系统子系统划分的综合评价准则。依据该准则提出了一种优化的大系统子系统划分搜索方法,逐步增加子系统分块维数,迭代搜索大系统子系统划分,以尽可能小的分块维数实现相对能量增益阵对应的子系统分块行元素和尽可能接近于1,最终挑选出较为合理的大系统控制系统结构设计方案。最后以两个典型大系统实例分析说明了该方法的可行性和有效性。 Chemical processes are usually large-scale systems, and there are always interactions between input variables and output variables. For most processes, heavy interactions exist in some parts while less interaction between other parts. Therefore, large-scale systems can be divided into several subsystems and controlled in block-wise based on their inner interactions. The number of possible subsystem divisions increases rapidly with the increase of dimensionality. In order to solve problems of subsystem division and control configuration design of large-scale systems, structural array was used as the mathematical description for subsystem division and variable pairing, and concepts of simplicity degree and controllability degree were proposed. A comprehensive evaluation criterion for possible subsystem division was obtained from the weighted sum of simplicity degree and controllability degree. A searching method for optimized subsystem division was presented accordingly. An iterative searching method was used via gradual increase of subsystem block dimension to find reasonable subsystem blocks with the sum of row elements of the relative energy gain array close to 1, and thus to find the most reasonable block decentralized control configuration design. Finally, two typical cases are used to demonstrate the validity and feasibility of the proposed interaction decomposition method for large-scale systems.
作者 许锋 袁未未 罗雄麟 XU Feng;YUAN Wei-wei;LUO Xiong-lin(Department of Automation,China University of Petroleum,Beijing 102249,China)
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2018年第3期606-619,共14页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(21676295) 中国石油大学(北京)科研基金(2462015YQ0510)
关键词 大系统 关联分析 子系统 块分散控制 large-scale systems interaction analysis subsystem block decentralized control
  • 相关文献

参考文献1

二级参考文献13

  • 1Bristol E H. On a New Measure of Interaction for Multivariable Process Control [ J ]. IEEE Transactions on Automatic Control, 1966,11 ( 1 ) : 133 - 134. 被引量:1
  • 2Lee J,Thomas F E. Dynamic Interaction Measures for Decentralized Control of Multivariable Processes [ J ]. Ind Eng Chem Res,2004,43(2) :283-287. 被引量:1
  • 3Michiel M F,Adrie E M H. Analyzing Dynamic Interaction of Control Loops in the Time Domain [ J ].Ind Eng Chem Res ,2002,41 ( 18 ) :4585 -4590. 被引量:1
  • 4Renanto H, Avon T H, Joko L. Comparison of Steady State and Dynamic Interaction Measurements in Multi- loop Control Systems [ J ]. ASEAN Journal of Chemical Engineering,2005,5 ( 1 ) : 1 ~ 15. 被引量:1
  • 5Balestrino A, Landi A, Menicagli A. ARGA Loop Pairing Criteria for Multivariable Systems [ C ]. Proceedings of the 47th IEEE Conference on Decision and Control. Cancun : IEEE ,2008:5668 - 5673. 被引量:1
  • 6Balestrino A, Landi A. ROmA Loop Pairing Criteria for Multivariable Processes [ C ]. Proceedings of the European Control Conference. Kos, Greece, 2007 : 4765- 4771. 被引量:1
  • 7McAvoy T,Arkun Y,Chen R D,et al. A New Approach to Defining a Dynamic Relative Gain [ J ]. Control Engi- neering Practice ,2003,11 ( 8 ) :907 - 914. 被引量:1
  • 8He M J, Cai W J, Ni W, et al. RNGA Based Control System Configuration for Multivariable Processes [ J ]. Journal of Process Control, 2009, 19 ( 7 ) : 1036 1042. 被引量:1
  • 9Niederlinski A. A Heuristic Approach to the Design of Linear Muhivariable Interacting Subsystems [ J ]. Automatica,1971,7(11) :691-701. 被引量:1
  • 10Xiong Q, Cai W J, He M J. A Practical Loop Pairing Criterion for Muhivariable Processes [ J ]. Journal ofProcess Control ,2005,15 ( 7 ) :741 - 747. 被引量:1

共引文献16

同被引文献55

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部