期刊文献+

用于重复充电运营记录的基于块采样的高效聚集查询算法

Efficient block-based sampling algorithm for aggregation query processing on duplicate charged records
下载PDF
导出
摘要 现有查询分析方法通常将实体识别作为线下预处理过程清洗整个数据集,然而,随着数据规模的不断增大,这种高计算复杂性的线下清洗模式已经很难满足实时性分析应用的需求。针对重复充电运营记录上的聚集查询问题,提出一种将近似聚集查询处理与实体识别相结合的方法。首先,通过基于块的采样策略采集样本;然后,在采集到的样本上利用实体识别方法识别出重复的实体;最后,根据实体识别的结果重构得到聚集结果的无偏估计。所提方法避免了识别全部实体的时间代价,通过识别少量样本数据即可返回满足用户需求的查询结果。真实数据集和合成数据集上的实验结果验证了所提方法的高效性和可靠性。 The existing query analysis methods usually treat the entity resolution as an offline preprocessing process to clean the whole data set. However, with the continuous increasing of data size, such offline cleaning mode with high computing complexity has been difficult to meet the needs of real-time analysis in most applications. In order to solve the problem of aggregation query on duplicate charged records, a new method integrating entity resolution with approximate aggregation query processing was proposed. Firstly, a block-based sampling strategy was adopted to collect samples. Then, an entity recognition method was used to identify the duplicate entities on the sampled samples. Finally, the unbiased estimation of aggregated results was reconstructed according to the results of entity recognition. The proposed method avoids the time cost of identifying all entities, and returns the query results that satisfy user needs by identifying only a small number of sample data. The experimental results on both real dataset and synthetic dataset demonstrate the efficiency and reliability of the proposed method.
作者 潘鸣宇 张禄 龙国标 李香龙 马冬雪 徐亮 PAN Mingyu 1 , ZHANG Lu 1, LONG Guobiao 1, LI Xianglong 1, MA Dongxue 1, XU Liang 2(1. State Grid Beijing Electric Power Company, Beijing 100075, China ; 2. NARI Group, Beijing 102299, Chin)
出处 《计算机应用》 CSCD 北大核心 2018年第6期1596-1600,1607,共6页 journal of Computer Applications
基金 国家电网公司总部科技项目(52020116000j)~~
关键词 大数据 实体识别 聚集查询 块采样 分布式计算 big data entity resolution aggregation query block sampling distributed computing
  • 相关文献

参考文献3

二级参考文献80

  • 1Nikki S. Gartner warns firms of "dirty data". Information Management Journal, 2007, 41 (3). http://www, allbusi ness. com/company-activities-management/operations quality-control/8901885-1. html. 被引量:1
  • 2Kohn L T, Corrigan J M, Donaldson M S. To err is human, building a safer health system. Washington, D. C. , USA: National Academies Press, 2000. 被引量:1
  • 3Eckerson W. Data quality and the bottom line: Achieving business success through a commitment to high quality data. The Data Warehousing Institute: Technical Report, 2002. http://download. 101com. com/pub/tdwi/Files/DQReport. pdf. 被引量:1
  • 4Weis M, Naumann F. DogmatiX tracks down duplicates in XML//Proceedings of the ACM S1GMOD International Con ference on Management of Data. Baltimore, Maryland, USA, 2005:431 -442. 被引量:1
  • 5Augsten N, Bohlen M H, Gamper J. Approximate matching of hierarchical data using pq-grams//Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, 2005:301-312. 被引量:1
  • 6Ananthakrishna R, Chaudhuri S, Ganti V. Eliminating fuzzy duplicates in data warehouses//Proceedings of the 28th International Conference on Very Large Data Bases. Hong Kong, China, 2002: 586-597. 被引量:1
  • 7Weis M, Naumann F. Detecting duplicates in complex XML data//Proceedings of the 22nd International Conference on Data Engineering. Atlanta, GA, USA, 2006:109. 被引量:1
  • 8Weis M, Naumann F. Detecting duplicate objects in XML documents//Proceedings of the International Workshop on Information Quality in Information Systems. Paris, France, 2004:10-19. 被引量:1
  • 9Zeng Z, Tung A K H, Wang J, Feng J, Zhou L. Comparing stars: on approximating graph edit distance. PVLDB, 2009, 2(1) : 25 -36. 被引量:1
  • 10Cho J, Shivakumar N, Garcia-Molina H. Finding replicated Web collections//Proceedings of the 2000 ACM SIGMOD In ternational Conference on Management of Data. Dallas: Texas, USA, 2000:355-366. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部