期刊文献+

基于相空间重构的煤炭价格时间序列的混沌特征研究 被引量:3

Analysis on the Chaotic Characteristic of Coal Price Time Series Based on Phase Space Reconstruction
下载PDF
导出
摘要 煤炭作为我国的基础性能源,煤炭价格分析在能源研究中一直至关重要。本文采用相空间重构技术,对国际环球动力煤(NEWC Global Coal)、我国的环渤海动力煤BSPI(5500k)和CII冶金煤(15500K)3种煤炭价格的时间序列,通过提取描述系统混沌吸引子等特征量参数,分析煤炭价格时间序列中的行为混沌特征,并计算得出各自的时间预测范围。研究结果表明:(1)国内外煤炭市场价格是一个复杂的非线性系统,G-P算法计算得出的嵌入维数与关联维数表明其具有明显的分形特征;(2)3种煤炭价格时间序列的嵌入维数为5、6和9,表明对国内外煤炭市场价格的短期预测可以基于相应维数的非线性模型来实现;(3)国内外煤炭的市场价格行为具有混沌特征,依据最大李雅普诺夫指数,计算得出国际和国内煤炭价格的有效预测期分别为5和12个月。研究结论可为相关部门和企业进行煤炭价格预测及相关政策制定提供理论指导和决策借鉴。 Coal is the basic energy of China. One of the most important issues is analyzing the coal price in energy economic development research. The article adopts the phase space reconstruction theory,selects three time series of coal prices: International Global Thermal Coal( NEWC Global Coal), Bohai Sea Thermal Coal BSPI( 5500 k) and CII Metallurgical Coal( 15500 K). The chaotic characteristics of the coal market price are analyzed and draw the time prediction range by extracting the characteristic parameters which can describe the chaotic attractor. The results show that:( 1) the coal price market is a complex nonlinear system and has obvious fractal characteristics;( 2) the embedded dimension of each coal price time series is greater than5,Indicating that the short-term forecast of international coal prices can be achieved by constructing a corresponding dimensional nonlinear model;( 3) there are a positive maximum Lyapunov index for the three coal price time series which shows that the price behavior coal market is chaotic at home and abroad. The prices of the International coal and domestic coal can be forecast for five months and twelve months. These conclusions can provide theoretical guidance for predicting coal prices and developing relevant policies.
作者 王帮俊 赵佳璐 Wang Bangjun;Zhao Jialu(School of Management,China University of Mining and Technology,Xuzhou 221116,China)
出处 《工业技术经济》 CSSCI 北大核心 2018年第7期45-50,共6页 Journal of Industrial Technological Economics
关键词 相空间重构 煤炭价格 混沌特征 分形维数 李雅普诺夫指数 时间序列 phase space reconstruction coal price chaotic feature fractal dimension Lyapunov index time series
  • 相关文献

参考文献4

二级参考文献37

  • 1李红权,马超群,邹琳.中国证券市场的混沌动力学特征研究[J].中国管理科学,2005,13(z1):194-200. 被引量:9
  • 2朱云,吴文锋,吴冲锋.国际视角下的中国股利支付率和收益率分析[J].中国软科学,2004(11):69-74. 被引量:15
  • 3[2]Palmer R,Arthur W B,Holland J H,et al.Artificial economic life:A simple model of a stock market[J].Physica D,1994,75:264-274. 被引量:1
  • 4[3]Arthur W B,Holland J H,LeBaron B,et al.Asset pricing under endogenous expectations in an artificial stock market//[C].In Arthur W B,Durlauf S,Lane D,ed.The Economy As An Evolving Complex System Ⅱ.Boston:Addison Welsley,1997:15//44. 被引量:1
  • 5[4]Grossman S,Stiglitz J.On the impossibility of informationally efficient markets[J].American Economic Review,1980,70:393-408. 被引量:1
  • 6[6]Chen S H,Yeh C H.Evolving traders and the busimess school with genetic programming:a new architecture of the agent-based artificial stock market[J].Journal of Economic Dynamics & Control,2001,25:363-393. 被引量:1
  • 7[8]Ma C Q,Li H Q,Zou L,et al.Long-memory in emerging markets:evidence from Chinese Stock Market[J].International Journal of Information Technology & Decision Making,2006,5(3):495-501. 被引量:1
  • 8Cristianini N,Shawe-Taylor J.An introduction support vector machines and other kernel-based learning methods[M].London:Cambridge University Press,2004. 被引量:1
  • 9Suykens J A K.Least squares support vector machines for classification and nonlinear modeling[J].Neural Network World,2000,10(1):29-48. 被引量:1
  • 10MacKay D J C.Bayesian interpolation[J].Neural Computation,1992,4(3):415 -447. 被引量:1

共引文献20

同被引文献34

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部