期刊文献+

用Bark频谱投影识别低信噪比动物声音 被引量:3

Identifying low-SNR animal sounds based on Bark spectral projection
下载PDF
导出
摘要 复杂环境声影响低信噪比动物声音的自动识别。为解决这一问题,本文提出一种不同声场景下低信噪比动物声音识别的方法。该方法把声音信号进行Bark尺度的小波包分解,再使用分解系数生成重构信号的频谱,并对频谱进行投影生成Bark频谱投影特征,通过随机森林分类器实现低信噪比动物声音的识别。该文分别在流水声环境、公路环境、风声环境和嘈杂说话声环境下,以不同的信噪比,对40种动物声音进行识别实验。结果表明,结合短时谱估计法、Bark频谱投影特征和随机森林的方法对不同信噪比的各种环境声音中动物声音的平均识别率可以达到80.5%,且在–10 d B的情况下依然保持平均60%以上的识别率。 In this paper, we consider the influence of complex background environments on the automatic recognition ofanimal sounds with low signal-to-noise ratios (SNRs). We propose a method for identifying low-SNR animal sounds invarious background environments. In this method, the sound signal is decomposed by a Bark scale wavelet packet, andthe decomposition coefficient is used to generate a spectrogram of the reconstructed signal, which is projected onto aspectrogram to generate a Bark spectral projection (BSP) feature. Random forests (RF) are then used to identify animalsounds with low SNRs. We classified 40 common animal sounds with different SNRs in noise environments such asflowing water, highway, wind, and loud speech. The experimental results show that by combining the proposed meth-ods of short-time spectrum estimation, BSP, and RF in various background environments with different SNRs, the meanidentification rate for animal noises can reach 80.5%. In addition, a recognition rate above 60% can be maintained evenat –10 dB.
作者 黄鸿铿 李应 HUANG Hongkeng;LI Ying(College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350116,China)
出处 《智能系统学报》 CSCD 北大核心 2018年第4期610-618,共9页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61075022) 福建省自然科学基金项目(2018J01793)
关键词 声音信号 自动识别 小波包变换 随机森林 环境声音 sound signal automatic recognition wavelet packet transform random forests environment sound
  • 相关文献

参考文献2

二级参考文献15

  • 1薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 2BOLL S F.Suppression of acoustics noise in speech using spectral subtraction[J].IEEE Transactions on Acoustics,Speech,and Signal Procession,1979,27(2):113-120. 被引量:1
  • 3BEROUTI M,SCHWARTZ R,MAKHOUL J.Enhancement of speech corrupted by acoustic noise[C] //Proceeding of IEEE1979 ICASSP.[S.l.] :IEEE Press,1979,4:208-211. 被引量:1
  • 4EPHRAIM Y,MALAH D.Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator[J].IEEE Trans.on Speech Signal Process.1984,ASSP-32(6):1109-1121. 被引量:1
  • 5EPHRAIM Y,VAN-TREES H L.A signal suhspace approach for speech enhancement[J].IEEE Transactions on Speech and Audio Processing,1995,3(4):251-266. 被引量:1
  • 6MEDIMA C A,ALCAIM A.Using neural networks wavelet denoising of speech for threshold selection[J].Electronics Letters,2003,37(25):1869-1871. 被引量:1
  • 7MARTIN R.Noise power spectral density estimation based on optimal smoothing and minimum statics[J].IEEE Trans.on Speech Audio Process,2001,9(5):504-512. 被引量:1
  • 8COHEN I.Noise estimation by minima controlled recursive averaging for robust speech enhancement[J].IEEE Trans.on Signal Process Letters,2002,9(1):12-15. 被引量:1
  • 9COHEN I.Noise spectrum estimation in adverse environments:improved minima controlled recursive averageing[J].IEEE Trans.on Speech Audio Process,2003,11(5).466-475. 被引量:1
  • 10RANGACHARI S,LOIZOU C.Noise-estimation algorithm for highly non-stationary environments[J].Speech Communication,2006,48:220-231. 被引量:1

共引文献19

同被引文献46

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部