期刊文献+

一种基于深度学习的PDM文档自动审核算法 被引量:1

A PDM Document Automatic Examination Algorithm Based on Deep Learning
下载PDF
导出
摘要 提出一种基于深度学习的PDM文档自动审核算法,该算法根据专家产生的文档训练集进行学习训练以形成模型参数,使用产生的模型参数对新文档进行审核以发现其中存在的各类错误,为审核人员提供辅助支撑。对用到的PDM文档分词、语句表示及分类进行了描述。该算法在客观性、经济实用性和即时性等方面都优于传统人工审核,为海量PDM文档的审核管理提供了一种解决途径,为以后PDM文档的智能化处理奠定了基础。 A PDM document automatic examination algorithm based on deep learning is proposed. It uses the document training set produced by experts for learning and training to generate model parameters, and uses these model parameters for new document examination to discover the various errors and provides assistant support for the examination personnel. The PDM document word segmentation, sentence expression and classification are described. The method is better than conventional manual examination in objectivity, economical practicability and timeliness. It provides a solution for the examination management of massive PDM documents, and provides a reference for the intelligent processing of PDM documents.
作者 宁凌 NI Ling(The 54th Research Institute of CETC,Shijiazhuang Hebei 050081,China)
出处 《计算机与网络》 2018年第10期57-58,61,共3页 Computer & Network
关键词 PDM 系统 深度学习 PDM system deep learning
  • 相关文献

参考文献4

二级参考文献57

  • 1MitchellTM著 曾华军 张银奎译.机器学习[M].北京:机械工业出版社,2003.. 被引量:46
  • 2梁茂成,文秋芳.国外作文自动评分系统评述及启示[J].外语电化教学,2007(5):18-24. 被引量:185
  • 3BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning,2009,2(1) :1-127. 被引量:1
  • 4LECUN Y,BENGIO Y, HINTON G E. Deep learning[J]. Nature,2015 ,521(7553) :436-444. 被引量:1
  • 5HINTON G E, OSINDERO S,TEH Y W. A fast learning algorithm for deep belief nets[J], Neural Computation,2006,18(7):1527-1554. 被引量:1
  • 6VINCENT P, LAROCHELLE H,BENGIO Y, et al. Extracting and composing robust features with denoising autoencod-ers[C] // Proceedings of the 25th International Conference on Machine Learning. Helsinki? Finland: ACM Press> 2008 :1096-1103. 被引量:1
  • 7VINCENT P,LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in adeep network with a local denoising criterion[J]. Journal of Machine Learning Research?2010 ?11(6) : 3371-3408. 被引量:1
  • 8HIHI S E,BENGIO Y. Hierarchical recurrent neural networks for long-term dependencies[C] // Proceedings of Advancesin Neural Information Processing Systems. Denver,USA:MIT Press, 1995 :493-499. 被引量:1
  • 9KRIZHEVSKY A,SUTSKEVER I,HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proceedings of Advances in Neural Information Processing Systems. South Lake Tahoe, USA: Curran Associates Press,2012.1097-1105. 被引量:1
  • 10ACKLEY D H,HINTON G E,SEJNOWSKI T J. A learning algorithm for Boltzmann machines[J]. Cognitive Science,1985,9(1):147-169. 被引量:1

共引文献44

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部