摘要
Data from high-resolution satellites were used to evaluate the spatial and temporal distribution of mesoscale convective vortices(MCVs) in central and east China and the western Pacific Ocean region. The monthly variation in MCVs was significant. From May to October, MCVs were clearly affected by large-scale environmental conditions,including the South Asian summer monsoon, subtropical high and solar radiation, which resulted in clear changes in MCV spatial distributions from strengthening and weakening processes. Based on the analysis of diurnal MCV variations and the precipitation rate from May to October, MCVs were found to occur more frequently over the ocean than over land. MCVs near the Sea of Japan and northern South China Sea occurred during all types of weather. Ocean occurrences near land, such as the Ryukyu Islands, were categorized as morning-active MCVs. The hilly regions of southeastern China and North China Plain were characterized by afternoon-active MCVs. Limited to topography and the urban heat island effect, the Beijing-Tianjin-Tangshan area had evening-active MCVs, while Changbai Mountain had nocturnal MCVs.
Data from high-resolution satellites were used to evaluate the spatial and temporal distribution of mesoscale convective vortices(MCVs) in central and east China and the western Pacific Ocean region. The monthly variation in MCVs was significant. From May to October, MCVs were clearly affected by large-scale environmental conditions,including the South Asian summer monsoon, subtropical high and solar radiation, which resulted in clear changes in MCV spatial distributions from strengthening and weakening processes. Based on the analysis of diurnal MCV variations and the precipitation rate from May to October, MCVs were found to occur more frequently over the ocean than over land. MCVs near the Sea of Japan and northern South China Sea occurred during all types of weather. Ocean occurrences near land, such as the Ryukyu Islands, were categorized as morning-active MCVs. The hilly regions of southeastern China and North China Plain were characterized by afternoon-active MCVs. Limited to topography and the urban heat island effect, the Beijing-Tianjin-Tangshan area had evening-active MCVs, while Changbai Mountain had nocturnal MCVs.
作者
YANG Cheng
WANG Yuan
JI Chun-xiao
JIANG Yu-jun
WANG Li-ji
KANG Li-li
杨程;王元;冀春晓;姜瑜君;王丽吉;康丽莉(Zhejiang Institute of Meteorological Science,Hangzhou 310008 China;Institute of Atmospheric Sciences,Nanjing University,Nanjing 210004 China;Network Information Center of Zhejiang Meteorological Service,Hangzhou 310021 China)
基金
Special Program for Basic Research of Science and Technology of China(GYHY201106035)
Key Project of Zhejiang Meteorological Bureau(2017ZD16)
Special Program of State Grid(SGZJ0000KJJS1600445)