摘要
Let G be an extension of a finite quasinilpotent group by a finite group. It is shown that under some conditions every Coleman automorphism of G is an inner automorphism. The interest in such automorphisms arose from the study of the normalizer problem for integral group rings. Our theorems generalize some well-known results.
让 G 是由一个有限的组的一个有限 quasinilpotent 组的延期。在一些条件下面, G 的每科尔曼自守是内部自守,这被显示出。对如此的自守的兴趣为不可分的组戒指从 normalizer 问题的学习产生了。我们的定理概括一些著名结果。