期刊文献+

基于无缝场景的智慧养老系统的关键技术研究 被引量:4

RESEARCH ON THE KEY TECHNOLOGY OF AN INTELLIGENT ELDERLY HEALTHCARE SYSTEM BASED ON SEAMLESS SCENE
下载PDF
导出
摘要 针对社会养老问题,提出一个低成本、可扩展性强、数据驱动的智慧养老系统。该系统利用射频识别技术采集老年人在养老院中的位置信息,使用位置数据结合机器学习算法建立老年人健康状况预测模型。通过与系统配套的手机应用软件,老人的家属可以及时了解老人在养老院中的健康状况。实验结果表明,所建立的模型预测结果准确率均在80%以上。该系统可以有效地对养老院中老年人的健康情况进行分析与判断,使得其得到更加精准的照护服务。 We present a low-cost,adaptable and data-driven intelligent elderly healthcare system to deal with the challenge of rapidly increasing aged population in China. The system used radio frequency identification( RFID)technology to monitor and record the location information of the elderly in nursing home. The location data,together with machine learning algorithms,was used to construct models to evaluate health conditions of the elderly. Family members of the elderly could know the health conditions of the elderly in time by using the application software on mobile devices.The results show that the prediction accuracies of the established models are over 80%. Therefore,this system can effectively analyze and evaluate the health conditions of the elderly in nursing home. It can provide precise healthcare services to the elderly.
作者 魏雨枫 路敏 李彩虹 邬渊 Wei Yufeng;Lu Min;Li Caihong;Wu Yuan(The Third People Hospital of Lanzhou,Lanzhou 730000, Gansu , China;School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, Gansu, China)
出处 《计算机应用与软件》 北大核心 2018年第6期330-333,共4页 Computer Applications and Software
关键词 射频识别 反向传播神经网络 支持向量机 智慧养老系统 RFID Back propagation neural network Support vector machine Intelligent elderly heahhcare system
  • 相关文献

参考文献2

二级参考文献43

  • 1工信部电信研究院大数据白皮书(2014)[M].北京:工业和信息化部电信研究院,2014. 被引量:1
  • 2Intel IT Center.大数据101:非结构化数据分析[M/OL].[2015-07-01 ]. http://www. intel. cn/content/dam/www/public/cn/zh/pdfvs/Big-data-101-Unstructured-data-Analytics.pdf, 2012. 被引量:1
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionalityof data with neural networks [J], Science, 2006, 313(5786): 504-507. 被引量:1
  • 4Rosenblatt F. The perceptron: A probabilistic model forinformation storage and organization in the brain. [J],Psychological Review, 1958,65(6) : 386-408. 被引量:1
  • 5Rumelhart D E,Hinton G E, Williams R J. Learningrepresentations by back-propagating errors [J]. Nature,1986, 323(6088): 533-536. 被引量:1
  • 6Huang G B, Chen L,Siew C K. Universal approximationusing incremental constructive feedforward networks withrandom hidden nodes [J]. IEEE Trans on Neural Networks,2006, 17(4): 879-892. 被引量:1
  • 7Vincent P,Larochelle H, Lajoie I,et al. Stacked denoisingautoencoders : Learning useful representations in a deepnetwork with a local denoising criterion [J]. Journal ofMachine Learning Research, 2010,11: 3371-3408. 被引量:1
  • 8LeCun Y, Bottou L, Bengio Y. Gradient-based learningapplied to document recognition [J]. Proceedings of theIEEE, 1998, 86(11): 2278-2324. 被引量:1
  • 9Williams R J,Zipser D. Gradient-based learning algorithmsfor recurrent connectionist networks, NU-CCS-90-9 [R].Boston,MA: Northeastern University, 1990. 被引量:1
  • 10Robinson A J, Fallside F. The utility driven dynamic errorpropagation network [R]. Cambridge, UK: Department ofEngineering, University of Cambridge, 1987. 被引量:1

共引文献78

同被引文献65

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部