期刊文献+

基于随机森林回归算法的感应电机驱动控制 被引量:8

Induction Motor Drive Control Based on Random Forest Regression Algorithm
下载PDF
导出
摘要 为了提高感应电机驱动系统在不同运行条件下的控制性能,将随机森林回归(RFR)算法引入到空间矢量脉宽调制(SVPWM)中,设计了一种新型的感应电机驱动控制器。和常规SVPWM方案相比,RFR的引入为SVPWM算法提供了快速实现和预测改进的优势,从而性能得到了提高。为了进一步突出基于RFR算法的优势,还与人工神经网络(ANN)算法和自适应神经模糊系统(ANFIS)算法进行对比分析,分析结果表明RFR算法在不同工况下的稳态误差、暂态响应和鲁棒性均优于ANN算法和ANFIS算法。最后,通过仿真和试验验证了新型控制算法的实际效果。 In order to improve the control performance of induction motor drive system under different operating conditions,a random forest regression(RFR)algorithm was introduced into space vector pulse width modulation(SVPWM),and a new induction motor drive controller was designed. Compared with the conventional SVPWM scheme,the introduction of RFR provided the advantages of fast implementation and prediction improvement for the SVPWM algorithm,which resulted in the performance improvement. In order to further highlight the advantages of RFR algorithm,it was also compared with artificial neural network(ANN)algorithm and adaptive neural fuzzy inference system(ANFIS)algorithm. The analysis results show that the steady-state error,transient response and robustness of the RFR algorithm are better than those of the ANN algorithm and the ANFIS algorithm under different operating conditions. Finally,the actual effect of the new control algorithm is verified by simulations and experiments.
作者 彭喜英 李博文 PENG Xiying1, LI Bowen2(1. College of Information & Business, Zhongyuan Uaiversity of Technology, Zhengzhou 451191,Henan, China ; 2. Zhengzhou Shi Bo Electric Automation Equipment Co., Ltd., Zhengzhou 450000, Henan, Chin)
出处 《电气传动》 北大核心 2018年第6期13-18,共6页 Electric Drive
基金 河南省重点科技攻关项目(152102210155)
关键词 感应电机 自适应神经模糊系统 人工神经网络 回溯搜索算法 随机森林回归 空间矢量脉宽调制 induction motor adaptive neural fuzzy inference system (ANFIS) artificial neural network (ANN) backtracking search algorithm(BSA) random forest regression(RFR) space vector pulse width modulation(SVPWM)
  • 相关文献

参考文献13

二级参考文献176

共引文献335

同被引文献87

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部