期刊文献+

基于深度视觉特征正则化的跨媒体检索研究 被引量:1

Research on cross media retrieval based on deep visual features regularization
下载PDF
导出
摘要 针对不同模态数据在底层空间上具有特征异构性的问题,以及传统的图像特征提取方法不能有效表达图像语义的问题,提出了一种基于深度视觉特征正则化的跨媒体检索方法。在此算法中,首先使用经过目标数据集微调的卷积神经网络提取图像的深度视觉特征,同时使用LDA模型提取文本底层特征,然后利用多类逻辑回归对图像和文本的底层特征进行训练和预测。由于文本特征具有较强的判别能力,而图像特征的分布特性杂乱,本文利用图像特征与文本特征之间的对应关系,使用文本特征对图像特征进行正则化,从而有效改善图像的视觉特征,提高图像视觉特征的语义表征能力。实验证明了该算法可以有效提高跨媒体检索的准确率。 In view of the problem that different modal data have feature heterogeneity in the underlying space and the traditional image visual feature extraction method can't express the image semanteme efficiently,this paper proposes a cross-media retrieval method based on the regularization of deep visual features.In this algorithm,we firstly use the convolution neural network finetuned by the target dataset to extract the deep visual features of the image and use the LDA model to extract the text features.Then,the image features and the text features are trained and predicted by using multiple logistic regression.Because of the strong discriminative ability of text features,but the distribution of image features is disorderly,so the paper makes use of the correspondence between image features and text features and using the text features to regularize the image features,so as to effectively improve the visual features of images and improve the semantic characterization ability of visual features.The experiment shows that the algorithm can effectively improve the accuracy of cross-media retrieval.
作者 金汉均 段贝贝 Jin Hanjun;Duan Beibei(School of Computer,Central China Normal University,Wuhan 430079,Chin)
出处 《电子测量技术》 2018年第12期114-118,共5页 Electronic Measurement Technology
基金 教育部人文社科规划基金(17YJA870010)项目资助
关键词 跨媒体检索 深度视觉特征 卷积神经网络 正则化 cross media retrieval deep visual features convolutional neural network regularization
  • 相关文献

参考文献7

二级参考文献148

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110. 被引量:1
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893. 被引量:1
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507. 被引量:1
  • 4Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154. 被引量:1
  • 5Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469. 被引量:1
  • 6Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48. 被引量:1
  • 7Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538. 被引量:1
  • 8LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404. 被引量:1
  • 9LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010. 被引量:1
  • 10Waibe[ A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Acoustics, Speech and Signal Processing, IEEF. Transactions on, 1989, 37(3): 328-339. 被引量:1

共引文献2705

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部