期刊文献+

基于pso_FSVM的车用动力电池温度预测模型研究 被引量:7

Research on temperature prediction model of vehicle power battery based on pso_FSVM
下载PDF
导出
摘要 针对混合动力汽车在复杂工况下动力电池温度测量可靠性下降的问题,提出基于pso_FSVM的车用动力电池温度预测模型,该研究分别采集车辆key_on和key_off两种状态下的动力电池温度数据,采用粒子群优化的快速支持向量机算法,构建了稳定的动力电池温度预测模型。实验结果表明,在车辆key_on和key_off两种状态下,数据集的预测数据与实际测量数据的相关系数分别达到0.810 2和0.797 3,温度预测误差小于2℃,pso_FSVM模型提高了动力电池温度预测的精度和可靠性。 In allusion to the problem of the decline of temperature measurement reliability for power battery of the hybrid electric vehicle in complicated working conditions,the temperature data of power battery at two vehicle states of Key_on and Key_off is collected respectively. A stable power battery temperature prediction model is constructed by using the particle swarm optimization based fast support vector machine algorithm. The experimental results show that the correlation coefficient between the prediction data and actual measurement data of data sets reaches 0.810 2 and 0.797 3 respectively at the two vehicle states of Key_on and Key_off,and the temperature prediction error is less than 2 ℃,which indicates that the pso_FSVM model can improve the prediction accuracy and reliability of power battery temperature.
作者 刘荣 童亮 许永红 LIU Rong;TONG Liang;XU Yonghong(Sehool of Eleetromeehanieal Engineering, Beijing Information Seienee & Teehnology University, Beijing 100192, China;Beijing Collaborative Innovation Center of Electric Vehicles, Beijing 100192, China)
出处 《现代电子技术》 北大核心 2018年第12期24-27,共4页 Modern Electronics Technique
基金 国家自然科学基金(51275053) 电动汽车北京市实验室项目(PXM_2013_014224_000005)~~
关键词 混合动力汽车 动力电池温度 粒子群 快速支持向量机 预测模型 热动力学模型 pso_FSVM hybrid electric vehicle power battery temperature particle swarm optimization fast support vector machine prediction model thermodynamics model
  • 相关文献

参考文献6

二级参考文献28

  • 1丁蕾,陶亮.改进的用于回归估计的支持向量机学习算法[J].计算机工程与应用,2005,41(19):44-46. 被引量:11
  • 2崔世林,樊京.最小二乘支持向量机及其在故障诊断中的应用[J].微计算机信息,2006(06S):214-216. 被引量:7
  • 3现代数学应用手册编委会.概率统计与随机过程卷(第一版)[M].北京:清华大学出版社,2000.276-302. 被引量:1
  • 4Suykens J A K, Vandewalle J. Least Square Support Vector Machine Classifiers [J]. Neural Processing Letters, 1999 , 9 (3) : 293-300. 被引量:1
  • 5O L Mangasarian, David R Musicant.Successive overrelaxation for support vector machines [J]. IEEE Trans on Neural Networks. 1999, 10(5):1032-1037. 被引量:1
  • 6http://archive.ics.uci.edu/ml/index.html. UCI - MLR: University of California Irvine Machine Learning Repository, California Irvine. 被引量:1
  • 7张学工.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:54
  • 8KHARE N,GOVIL R. Modeling automotive battery diagnostics[J].Power Electronics Technology,2008,(03):36-41. 被引量:1
  • 9SONG Y H,YANG Y X,HU Z CH. Present status and development trend of batteries for electric vehicles[J].Dianwang J ishu / Power System Technology,2011,(04):1-7. 被引量:1
  • 10CHEN Y F,EVANS W,SCHARRER G. Calculation of temperature rise in lithium polymer batteries of Sandia conceptual designs during USABC Dynamic Stress Test[J].{H}Journal of Power Sources,1998,(02):240-246. 被引量:1

共引文献62

同被引文献74

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部