期刊文献+

多维QoS约束云任务调度研究 被引量:2

Cloud Task Scheduling Research with Multidimensional QoS Constraints
下载PDF
导出
摘要 云任务调度是目前研究的热点,为了在给定用户满意度的前提下缩短任务完成时间,建立了具有用户满意度约束的云任务调度数学模型,提出一种多维QoS约束的改进模拟退火云任务调度算法对模型进行求解.以任务完成时间为目标,引入多维QoS约束时间贪心策略产生初解,实行简单模拟退火过程,始终处于用户QoS约束下搜索最佳分配方案.仿真实验表明,该调度策略能够保证用户满意度的同时缩短任务完成时间,是一种用户和云服务提供商同时兼顾的有效调度策略. Cloud task scheduling is a hotspot of current research, in order to shorten the task completion time on the premise of a given user satisfaction. Mathematical model of Cloud task scheduling with user satisfaction constraint is established. And an improved simulated annealing cloud task scheduling algorithm with multi-dimension QoS constraints is proposed to solve the model in the paper. The task completion time as the goal, time greedy strategy of multi-dimension QoS constraints is introduced to produce initial solution. The algorithm adopt simple simulated annealing process to search the best scheme under the user's QoS constraints. Simulation experiments show that the scheduling policy to ensure customer satisfaction and shorten task completion time. It is a kind of effective scheduling strategy that consider both users and providers of cloud services.
作者 任金霞 钟小康 REN Jin-xia;ZHONG Xiao-kang(College of Electrical Engineering &Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China)
出处 《微电子学与计算机》 CSCD 北大核心 2018年第7期97-100,105,共5页 Microelectronics & Computer
基金 江西省教育厅科学技术研究项目(GJJ150679)
关键词 云计算 服务质量 贪心策略 模拟退火算法 cloud computing quality of service greedy strategy simulated annealing algorithm
  • 相关文献

参考文献6

二级参考文献49

  • 1熊聪聪,冯龙,陈丽仙,苏静.云计算中基于遗传算法的任务调度算法研究[J].华中科技大学学报(自然科学版),2012,40(S1):1-4. 被引量:27
  • 2段海滨,王道波,于秀芬,朱家强.基于云模型理论的蚁群算法改进研究[J].哈尔滨工业大学学报,2005,37(1):115-119. 被引量:44
  • 3徐精明,曹先彬,王煦法.多态蚁群算法[J].中国科学技术大学学报,2005,35(1):59-65. 被引量:66
  • 4马立肖,王江晴.遗传算法在组合优化问题中的应用[J].计算机工程与科学,2005,27(7):72-73. 被引量:25
  • 5王莉,窦旻,刘宗田,黄美丽.一种快速网格任务调度策略[J].计算机科学,2007,34(6):128-130. 被引量:1
  • 6Bhadani A,Chaudhary S.Performance evaluation of Web serv-ers using central load balancing policy over virtual machines on cloud[C] //Proceedings of the Third Annual ACM Banga-lore Conference.New York,NY,USA:ACM,2010. 被引量:1
  • 7Liu Hao,Liu Shijun,Meng Xiangxu,et al.LBVS:a Load Bal-ancing strategy for Virtual Storage[C] //2010IEEE Interna-tional Conference on Service Sciences.[S.l.] :IEEE Press,2010:257-262. 被引量:1
  • 8Zhang Bo,Gao Ji,Ai Jieqing.Cloud loading balance algo-rithm[C] //Information Science and Engineering.Hangzhou,China:[s.n.] ,2011:5001-5004. 被引量:1
  • 9Zhao Yi,Huang Wenlong.Adaptive distributed load balancing algorithm based on live migration of virtual machines in cloud[C] //2009Fifth International Joint Conference on INC,IMS and IDC.Washington DC,USA:IEEE Computer Society,2009:170-175. 被引量:1
  • 10Wang Shu-Ching,Yan Kuo-Qin,Liao Wen-Pin,et al.Towards a load balancing in a three-level cloud computing network[C] //20103rd IEEE International Conference on Computer Sci-ence and Information Technology(ICCSIT).[S.l.] :IEEE Press,2010:108-113. 被引量:1

共引文献77

同被引文献21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部