期刊文献+

拉锥Ge_(15)Sb_(20)Se_(65)硫系玻璃光纤对乙醇溶液检测的光谱分析研究 被引量:4

Spectroscopic Analysis of Ethanol Solution Detection with Ge_(15)Sb_(20)Se_(65) Chalcogenide Glass Tapered Fiber
原文传递
导出
摘要 采用熔融淬冷法制备了Ge_(15)Sb_(20)Se_(65)硫系玻璃,并拉制成直径为500μm的裸玻璃光纤,损耗测量结果显示光纤在6μm波长处的最低损耗为1.68dB/m。利用自行搭建的自动光纤拉锥平台拉制了腰锥直径分别为20,100,250μm的拉锥光纤,并对不同浓度的乙醇溶液进行了光谱分析检测实验,最后基于光纤倏逝波理论用COMSOL Multi physics软件仿真了三种不同腰锥直径的锥形光纤对乙醇溶液的传感灵敏特性,与实验结果进行了对比。 In this work,Ge15Sb20Se65 glass is synthesized by the melt-quenching method and then drawn into a bare glass fiber with a diameter of 500μm.The minimum transmission loss of this fiber is about 1.68 dB/m at the wavelength of 6μm.A homemade tapering platform allows to taper the chalcogenide fibers into different waist diameters of 20,100 and 250μm,respectively.The spectroscopic analysis of the tapered fibers in ethanol solution with different concentrations is presented.Based on the theory of fiber evanescent wave,the sensing characteristics of the tapered fiber in the ethanol solution are simulated by COMSOL Multiphysics software.The results of simulation and experiment are compared and discussed.
作者 王晓美 杨晨风 戴世勋 王莹莹 徐栋 尤晨阳 Wang Xiaomei;Yang Chenfeng;Dai Shixun;Wang Yingying;Xu Dong;You Chenyang(Laboratory of Infrared Material and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo Zhejiang 315211, China;Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo, Zhejiang 315211, China)
出处 《光学学报》 EI CAS CSCD 北大核心 2018年第6期44-50,共7页 Acta Optica Sinica
基金 国家自然科学基金(61435009 61627815) 浙江省重中之重学科开放基金(xkxl1536) 宁波大学王宽诚幸福基金
关键词 光纤光学 硫系玻璃光纤 红外传感 拉锥光纤 红外光谱 fiber optics chalcogenide glass fiber infrared sensing tapered fiber infrared spectroscopy
  • 相关文献

参考文献4

二级参考文献52

  • 1黄锐,蔡海文,瞿荣辉,方祖捷.一种同时测量温度和应变的光纤光栅传感器[J].中国激光,2005,32(2):232-235. 被引量:36
  • 2张振远,凌根华.硫系玻璃红外光纤[J].玻璃纤维,2005(1):15-18. 被引量:4
  • 3毛锡赉,杨佩红.Ge-As-S系统玻璃物理和声光性质的研究[J].光学学报,1984,4(4):348-353. 被引量:1
  • 4B. Bureau, S. Maurugeon, F. Charpentier et al.. Chalcogenide glass fibers for infrared sensing and space optics[J]. Fiber and Integrated Optics, 2009, 28(1) : 65-80. 被引量:1
  • 5J. A. Harrington. A review of IR transmitting, hollow waveguides [J]. Fiber & Integrated Optics, 2000, 19 (3): 211-227. 被引量:1
  • 6J. Sanghera, I. Aggarwal. Active and passive chalcogenide glass optical fibers for IR applications: a review[J]. J. Non-Cryst. Solids, 1999, 256-257:6-16. 被引量:1
  • 7J. Sanghera, L. Shaw, P. Pureza et al.. Progress of chalcogenide glass fibers[C]. OFC, 2007. OWA2. 被引量:1
  • 8B. Bureau, X. H. Zhang, F. Smektala et al.. Recent advances in chalcogenide glasses[J]. J. Non-Cryst. Solids, 2004, 345-346 : 276-283. 被引量:1
  • 9A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov et al. Demonstration of CO2 laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core[J]. Opt. Express, 2011, 19(25) : 25723-25728. 被引量:1
  • 10E. Jurisova, L. Ladanyi, J. Mullerova. Spectral response of optical switches based on chalcogenide bistable fiber Bragg gratings[C]. ELEKTRO, 2012. 493-499. 被引量:1

共引文献24

同被引文献22

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部