摘要
设R是含非平凡幂等元P的素环,C∈R,C=PC.本文证明可加映射△:R→R在C可导,即△(AB)=△(A)B+A△(B),A,B∈R,AB=C当且仅当存在导子δ:R→R,使得△(A)=δ(A)+△(I)A,A∈R.没有I1型中心直和项的von Neumann代数上的可导映射也有类似结论.利用该结论证明了,若非零算子C∈B(X),使得ran(C)或ker(C)在X中可补,则可加映射△:B(X)→B(X)在C可导当且仅当它是导子.特别地,证明了因子von Neumann代数上的可加映射在任意但固定的非零算子可导当且仅当它是导子.
Let R be a prime ring containing a nontrivial idempotent P. Suppose C ∈R satisfies C = PC. It is shown that an additive map △ :R→Ris derivable at C, that is, △(AB) = △(A)B + A△(B) for every A,B ∈R with AB = C if and only if there exists a derivation δ: R→R such that △(A) = δ(A) + △(I)A for all A ∈ R. Similar results are obtained for yon Neumann algebras with no central abelian projections. As its application, we obtain that, if nonzero operator C ∈B(X) such that ran(C) or ker(C) is complementary in X, then an additive map△: B(X) →B(X) is derivable at C if and only if it is a derivation. In particular, we show that an additive map from a factor von Neumann algebra into itself is derivable at an arbitrary but fixed nonzero operator if and only if it is a derivation.
作者
郭玉琴
安润玲
Yu Qin GUO;Run Ling AN(Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, P. R. Chin)
出处
《数学学报(中文版)》
CSCD
北大核心
2018年第4期631-640,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11001194)