摘要
设R是环,J(R)和C(R)分别表示R的Jacobson根与中心,g(x)∈C(R)[x]为一给定多项式.称R为g(x)-J-clean环,如果任何r∈R可表为r=s+j,其中j∈J(R)且g(s)=0.给出g(x)-J-clean环的基本性质,并给出一些J-clean环的等价刻画,考察(x3-x)-clean环与弱clean环的关系,也证明(xn-1)-J*-clean环就是有限域.
Let R be a ring,J(R) and C(R) denote the Jacobson radical and the center respectively,and g(x) ∈C(R) [x] is a given polynomial. R is called g(x)-J-clean ring,if any r∈R can be written as r = s + j,where j∈J(R) and g(s) = 0. We obtained some basic properties of g(x)-J-clean rings and some equivalent conditions of J-clean rings. We studied the relations between(x3-x)-clean rings and weakly clean rings,and proved that an(xn-1)-J*-clean ring is a finite field.
作者
沈磊
王芳贵
王茜
SHEN Lei;WANG Fanggui;WANG Xi(College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan)
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2018年第4期483-488,共6页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(11171240)