期刊文献+

Ionic liquid-assisted hydrothermal synthesis of SnS nanoparticles:Electrode materials for lithium batteries,photoluminescence and photocatalytic activities 被引量:2

Ionic liquid-assisted hydrothermal synthesis of SnS nanoparticles:Electrode materials for lithium batteries, photoluminescence and photocatalytic activities
下载PDF
导出
摘要 Tin mono-sulphide(Sn S) nanoparticles(Nps) have been successfully synthesised through ionic liquid assisted hydrothermal method using hydrated tin(II) chloride as a precursor, thiourea as sulphur source precursors using 2-Methoxy ethyl methyl imidazolium methane sulfonate ionic liquid as co-solvent. The Reitveld refinement on powder X-ray diffraction(PXRD) confirmed the presence of orthorhombic Sn S structure as major phase along with traces amount of Sn S2 and Sn2 S3. Diffuse reflectance spectrum studies revealed the energy band gap around 1.38 e V. TEM images confirmed the Sn S Nps with average particle size of 40 nm and HRTEM suggest good crystallinity. The electrochemical property for lithium storage behaviour shows an initial discharge capacity of 658 m Ah/g and it retains discharge capacity of 426 m Ah/g for 16 cycles, at current density 100 m A/g. The obtained results indicate that Sn S Nps to be one of the possible promising anode materials for next generation Lithium batteries. Photoluminescence study of Sn S Nps shows a strong green emission at 530 nm. Sn S Nps were also tested for the photocatalytic adsorption of methylene blue and Rhodamine B. Tin mono-sulphide(Sn S) nanoparticles(Nps) have been successfully synthesised through ionic liquid assisted hydrothermal method using hydrated tin(II) chloride as a precursor, thiourea as sulphur source precursors using 2-Methoxy ethyl methyl imidazolium methane sulfonate ionic liquid as co-solvent. The Reitveld refinement on powder X-ray diffraction(PXRD) confirmed the presence of orthorhombic Sn S structure as major phase along with traces amount of Sn S2 and Sn2 S3. Diffuse reflectance spectrum studies revealed the energy band gap around 1.38 e V. TEM images confirmed the Sn S Nps with average particle size of 40 nm and HRTEM suggest good crystallinity. The electrochemical property for lithium storage behaviour shows an initial discharge capacity of 658 m Ah/g and it retains discharge capacity of 426 m Ah/g for 16 cycles, at current density 100 m A/g. The obtained results indicate that Sn S Nps to be one of the possible promising anode materials for next generation Lithium batteries. Photoluminescence study of Sn S Nps shows a strong green emission at 530 nm. Sn S Nps were also tested for the photocatalytic adsorption of methylene blue and Rhodamine B.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期806-812,共7页 能源化学(英文版)
基金 BRNS-BARC,Department of Atomic Energy,Govt.of India(37(2)/14/25/2015/BRNS dated 03/12/2015)for financial help to carry out the research work ISRO-RESPOND(Project no.ISRO/RES/3/661/2014-15 Dated 14-07-2014)Govt.of India for financial support Vision Group of Science and Technology,Govt.of Karnataka,for the financial help under the scheme of Seed Money to Young Scientists for research activities.(SMYSR,GRD Number–498)
关键词 Nanoparticles Lithium-ion batteries Ionic liquids Ionothermal Nanoparticles Lithium-ion batteries Ionic liquids Ionothermal
  • 相关文献

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部