期刊文献+

On Quasi-Chebyshevity Subsets of Unital Banach Algebras

On Quasi-Chebyshevity Subsets of Unital Banach Algebras
下载PDF
导出
摘要 In this paper, first, we consider closed convex and bounded subsets of infinite-dimensional unital Banach algebras and show with regard to the general conditions that these sets are not quasi-Chebyshev and pseudo-Chebyshev. Examples of those algebras are given including the algebras of continuous functions on compact sets. We also see some results in C*-algebras and Hilbert C*-modules. Next, by considering some conditions, we study Chebyshev of subalgebras in C*-algebras. In this paper, first, we consider closed convex and bounded subsets of infinite-dimensional unital Banach algebras and show with regard to the general conditions that these sets are not quasi-Chebyshev and pseudo-Chebyshev. Examples of those algebras are given including the algebras of continuous functions on compact sets. We also see some results in C*-algebras and Hilbert C*-modules. Next, by considering some conditions, we study Chebyshev of subalgebras in C*-algebras.
出处 《Analysis in Theory and Applications》 CSCD 2018年第1期92-102,共11页 分析理论与应用(英文刊)
关键词 Best approximation Quasi-Chebyshev sets Pseudo-Chebyshev C*-algebras HilbertC*-modules. Best approximation Quasi-Chebyshev sets Pseudo-Chebyshev C*-algebras HilbertC*-modules.
  • 相关文献

参考文献1

二级参考文献27

  • 1Carlos E. Durán,Luis E. Mata-Lorenzo,Lázaro Recht.Metric Geometry in Homogeneous Spaces of the Unitary Group of a C*-Algebra. Part II. Geodesics Joining Fixed Endpoints[J]. Integral Equations and Operator Theory . 2005 (1) 被引量:1
  • 2Robertson A G,Yost D.Chebyshev subspaces of operator algebras. Journal of the London Mathematical Society . 1979 被引量:1
  • 3Robertson A G.Best approximation in von Neumann algebras. Mathematical Proceedings of the Cambridge Philosophical Society . 1977 被引量:1
  • 4Rieffel M A.Leibniz seminorms for "Matrix algebras converge to the sphere". Quanta of Maths,Clay Mathematics Proceedings . 2011 被引量:1
  • 5Rieffel M A.Vector bundles and Gromov-Hausdorff distance. J K-Theory . 2010 被引量:1
  • 6Pedersen G K.ebysev subspaces of C -algebras. Mathematica Scandinavica . 1979 被引量:1
  • 7Kadison R V,Ringrose J R.Fundamentals of the Theory of Operator Algebras, Vol. 2: Advanced Theory. Graduate Studies in Mathematics . 1997 被引量:1
  • 8Kadison R V,Ringrose J R.Fundamentals of the Theory of Operator Algebras,vol. III. Special Topics,Elementary Theory — An Exercise Approach. . 1991 被引量:1
  • 9Kadison R V,Ringrose J R.Fundamentals of the Theory of Operator Algebras,vol. I. Elementary Theory. . 1997 被引量:1
  • 10Gajendragadkar P.Norm of a derivation on a von Neumann algebra. Transactions of the American Mathematical Society . 1972 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部