期刊文献+

PCA和GA-BP结合的地磁导航适配区选择方法 被引量:6

Geomagnetic Navigation Matching Area Selection Based on PCA and GA-BP Neural Network
下载PDF
导出
摘要 由于地磁图适配区的选择是影响地磁导航定位精度的重要因素,因此提出一种基于主成分分析法(PCA)和GA-BP神经网络相结合的地磁背景场适配/非适配区自动识别和分类的方法。首先利用PCA对地磁特征参数进行分析,选择出独立的、并且包含主成分的特征参量,其次构建GA-BP神经网络模型,建立地磁特征参数和匹配性能的对应关系,从而实现适配/非适配区的划分。通过多次仿真试验,证明了采用该方法能够选择出较好的适配区域,提高地磁导航定位精度。 The selection of suitable matching area of geomagnetic map is important for ensuring the positioning accuracy of geomagnetic navigation. This paper puts forward a method for the automatic recognition and classification of the suitable and unsuitable matching areas of geomagnetic background field based on Principal Component Analysis( PCA) and GA-BP neural network. To select independent characteristic parameters containing the main components,PCA is used to analyze the geomagnetic characteristic parameters. Then,the GA-BP neural network model is constructed,and the correspondence between the geomagnetic characteristic parameters and matching performance is established,so as to realize the recognition and classification of suitable and unsuitable matching areas. Simulation results show that this method can efficiently find out a more effective matching area,and improve the positioning accuracy of geomagnetic navigation.
作者 王晨阳 WANG Chen-yang(School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)
出处 《电光与控制》 北大核心 2018年第6期110-114,共5页 Electronics Optics & Control
关键词 地磁导航 特征参数 主成分分析 GA-BP神经网络 适配区选择 geomagnetic navigation characteristic parameter principal component analysis GA-BP neural network matching area selection
  • 相关文献

参考文献8

二级参考文献54

  • 1齐志泉,田英杰,徐志洁.支持向量机中的核参数选择问题[J].控制工程,2005,12(4):379-381. 被引量:39
  • 2安如,金夏玲,王慧麟,冯学智,徐大新.基于特征匹配的影像可匹配性研究[J].红外与激光工程,2005,34(4):469-473. 被引量:10
  • 3江标初,陈映鹰.层次景象匹配区选取准则[J].同济大学学报(自然科学版),2007,35(6):830-833. 被引量:13
  • 4杨功流,李士心,姜朝宇.地磁辅助惯性导航系统的数据融合算法[J].中国惯性技术学报,2007,15(1):47-50. 被引量:58
  • 5杨亚鹏 罗诗途 吴美平 等.面向相关匹配算法应用的地磁图适应性分析.导航与控制,2009,(2):9-15. 被引量:1
  • 6N. Bergman. Recursive Bayesian Estimation Navigation and Tracking Application[C]. Sweden: IEEE Proc. of Position Location and Navigation Conf. 1984: 286-293. 被引量:1
  • 7N. Bergman. A Bayesian approach to terrain,aided navigation[C]. In Proc. of SYSID'97, llth IFAC Symposium on System Identification, 1997: 1531-1536. 被引量:1
  • 8Ratkovic J A. Estimation techniques and other work on image correlation[C].//ICSP Proceedings.Feb. 1997: 54-60. 被引量:1
  • 9Inglada J. Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(3): 235-238. 被引量:1
  • 10Johnson M W. Analytical development and test results of acquisition probability for terrain correlation devices used in navigation systems [C]//AIAA 10th Aerospace Sciences Meeting, 1972: 1-9. 被引量:1

共引文献35

同被引文献48

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部