期刊文献+

一种基于多目标优化的卫星周期性持续观测任务规划方法 被引量:10

Method of Satellite Periodic Continuous Observing Task Scheduling Based on Multi-objective Optimization
下载PDF
导出
摘要 随着各领域对卫星遥感数据需求的日益深入,用户不再满足于卫星对地面目标单次观测所获得的遥感数据,而是希望组网卫星能够对目标进行周期性持续观测,以实现目标态势定期刷新.这对卫星任务规划研究提出了更高的要求,传统的多星多目标任务规划方法均假设目标一旦被观测即任务完成,难以适应周期性持续观测任务规划场景.本文分析了组网卫星周期性持续观测任务规划问题,建立了约束满足问题模型.基于分解的多目标进化算法框架,提出了组网卫星周期性持续观测任务规划方法,从观测周期超时程度和卫星能量消耗等两个维度进行多目标优化求解.最后,通过仿真实验,验证了该方法的可行性和有效性. With the increasing demands of satellite remote sensing data in various fields,users are no longer satisfied with the remote sensing data of ground targets obtained from single observation. In order to achieve the goal of target situation periodic refreshment,a new observation request which need satellite cluster to do observations periodically to the same target emerges. This brings about a new challenge to satellite task scheduling. The traditional multi-satellite multi-target scheduling method assumes that if one target is observed,then the task is completed. There is no need for satellite observing it anymore. So it is difficult to apply traditional method to our problem. This paper analyzes the satellite periodic continuous observing task problem and establishes constraint satisfaction problem model with two objective functions which are the degree of timeout and energy consumption. Based on the MOEA/D algorithm framework,a method of satellite periodic continuous observation task scheduling is proposed. Finally,some experiments have been conducted to validate the correctness and practicability of our scheduling algorithm.
作者 王凌峰 陈兆荣 陈浩 陈宏盛 WANG Ling-feng;CHEN Zhao-rong;CHEN Hao;CHEN Hong-sheng(College of Electronic Science and Engineering,National University of Defense Technology, Changsha 410073, China;Unit 95874 of PLA,Nanjing 210022 ,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第6期1366-1371,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61101184 61174159)资助
关键词 组网卫星 成像任务规划 周期性持续观测 多目标优化 进化算法 satellite cluster observing task scheduling periodic continuous observation multi-objective optimization evolutionary algorithms
  • 相关文献

参考文献4

二级参考文献62

  • 1李菊芳,谭跃进.卫星观测系统整体调度的收发问题模型及求解[J].系统工程理论与实践,2004,24(12):65-71. 被引量:25
  • 2王钧,李军,陈健,郭玉华,景宁.多目标EOSs联合成像调度方法[J].宇航学报,2007,28(2):354-359. 被引量:33
  • 3李菊芳.航天侦察多星多地面站任务规划问题研究[D].国防科技大学,2005. 被引量:4
  • 4Ho N B, Tay J C, Lai E M K. An effective architecture for learning and evolving flexible job-shop schedules[J]. European Journal of Operational Research, 2007, 179(2): 316-333. 被引量:1
  • 5Chung C J, Reynolds R G. A testbed for solving optimization problems using cultural algorithm[C]//Proceedings of the Fifth Annual Conference on Evolutionary Programming, Cambridge: MIT Press, 1996,1: 225-236. 被引量:1
  • 6Branke J. Memory-enhanced evolutionary algorithms for dynamic optimization problems[C]// Proceedings of Congress on Evolutionary Computation, Piscataway: IEEE Press, 1999, 1: 1875-1882. 被引量:1
  • 7Louis S J, McDonnell J. Learning with case-injected genetic algorithms[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(4): 316 328. 被引量:1
  • 8Michalski R S. Learnable evolution model: Evolution process guided by machine learning[J]. Machine Learning, 2000, 38(1): 9-40. 被引量:1
  • 9Wojtusiak J. The LEM3 system for multitype evolutionary optimization[J]. Computing a~d [nformatics, 2009, 28(2): 225-236. 被引量:1
  • 10Reynolds R G. An introduction to cultural algorithms[C]// Proceedings of the Third Annual Conference on Evolutionary Programming, River Edge, N J: World Scientific, Singapore, 1994, 1: 131-139. 被引量:1

共引文献66

同被引文献70

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部