期刊文献+

联合语义的深度学习行人检测 被引量:2

Deep Learning-Based Pedestrian Detection Combined with Semantics
下载PDF
导出
摘要 视频行人检测是计算机视觉的一个重要应用,本文利用深度学习检测近似垂直视角的行人,但若单纯检测行人,易受与行人语义相关的行人附属属性(如背包和帽子)的干扰,容易造成误检.本文提出一种基于更快区域卷积神经网络的联合语义行人检测方法:首先调整网络模型,增强对小目标的辨别力,使其可以有效的检测行人和行人的语义属性;然后利用空间关系建立行人及其语义属性的关联,合并行人与其语义信息,并对候选行人目标进行自适应得分调整,结合行人语义属性判断候选行人目标.大量的实验表明,本文的方法精度高,速度快,具有实用价值,且检出的行人与其语义属性还可用于后续的人数统计和行人行为分析. Pedestrian detection is an important application of computer vision. However, it mostly uses the methods of low-level features. Deep learning, by combining the low-level features of pedestrians, can get more abstract representation of high-level features which makes the detection more robust. In this study, we propose a Faster Region-based Convolutional Neural Networks(RCNN)-based pedestrian detection method in which semantics is jointly considered.Firstly, we modify and fine-tune the Faster RCNN for fitting in the pedestrian dataset and for making it more capable of detecting small objects. Secondly, we establish connections between the pedestrian and its semantic attributes by spatial relationship, then fuse the pedestrian and its semantic attributes, and meanwhile adaptively adjust the confidence of the target pedestrian. The adaptive adjustment strategy, based on the connections between the pedestrian and its semantic attributes, realizes the fusion of the individual information. Extensive experiments and comparison show that the proposed approach in this study is of high accuracy, acceptable speed, and practical value. What is more, the semantic attributes can be used to count people or analyze the pedestrian's behavior.
作者 邓炜 刘秉瀚 DENG Wei;LIU Bing-Han(College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China)
出处 《计算机系统应用》 2018年第6期165-170,共6页 Computer Systems & Applications
基金 国家自然科学基金(61473330)
关键词 行人检测 深度学习 语义属性 卷积神经网络 pedestrian detection deep learning semantic attributes convolutional neural network
  • 相关文献

参考文献6

二级参考文献172

  • 1安宁,林树忠,刘海华,崔慧.图像处理方法研究及其应用[J].仪器仪表学报,2006,27(z1):792-793. 被引量:34
  • 2贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 3Enzweiler M, Gavrila D M. Monocular Pedestrian Detection: Survey and Experiments [ J ]. IEEE Tran- sactions on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179-2195. 被引量:1
  • 4Zhang L, Nevatia R. Efficient Scan-window Based Object Detection Using GPGPU [ C ]//Proceedings of 2008 IEEE Computer Society Confence on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press ,2008 : 1-7. 被引量:1
  • 5Bauer S, Kohler S, Doll K, et al. FPGA-GPU Architecture for Kernel SVM Pedestrian Detection [ C ]// Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C. ,USA:IEEE Press,2010:61-68. 被引量:1
  • 6Chen Yanping,Li Shaozi,Lin Xianming. Fast Hog Feature Computation Based on CUDA [ C ]//Proceedings of 2011 IEEE International Conference on Computer Science and Automation Engineering. Washington D.C., USA: IEEE Press ,2011:748-751. 被引量:1
  • 7Cao T P, Deng Guang. Real-time Vision-based Stop Sign Detection System on FPGA I C //Proceedings of DICTA' 08. Washington D. C. , USA : IEEE Press, 2008 : 465-471. 被引量:1
  • 8Kadota R, Sugano H, Hiromoto M, et al. Hardware Architecture for HOG Feature Extraction I C //Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Washington D.C. , USA: IEEE Press ,2009 : 1330-1333. 被引量:1
  • 9Hiromoto M,Miyamoto R. Hardware Architecture for High- accuracy Real-time Pedestrian Detection with CoHOG Features [ C ]//Proceedings of the 12th International Conference on Computer Vision. Washington D. C. , USA: IEEE Press ,2009:894-899. 被引量:1
  • 10Negi K,Dohi K, Shibata Y, et al. Deep Pipelined Onechip FPGA Implementation of a Real-time Image-based Human Detection Algorithm I C ]//Proceedings of Inter- national Conference on Field-programmable Technology.Washington D. C. , USA : IEEE Press ,2011 : 1-8. 被引量:1

共引文献192

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部