期刊文献+

基于压缩感知的空间高速自旋目标ISAR成像方法

ISAR Imaging Method for Rapidly Spinning Targets in Space Based on Compressed Sensing
下载PDF
导出
摘要 针对空间高速自旋目标的ISAR成像问题,在分析高速自旋目标回波模型的基础上,提出了基于轨道运动的二维成像方法,利用压缩感知思想,有效缩短了成像积累时间,并结合自旋对目标回波的影响,提出了一种三维成像方法。所提方法根据利用轨道信息获得的二维像序列,获取目标散射点沿旋转轴方向的高度维信息,然后利用自旋信息通过压缩感知方法进行二维投影切片成像,从而得到三维成像结果。该方法通过预先获得目标散射点的高度维信息,大大缩减了搜索区间,提高了搜索精度,仿真结果验证了所提方法的有效性。 The inverse synthetic aperture radar( ISAR) imaging problem of rapidly spinning targets is of great importance to space target recognition. Firstly,the echo model of rapidly spinning targets is established and analyzed,following which a two-dimensional( 2 D) imaging method using the orbital information is presented,where compressed sensing( CS) concept is incorporated for reducing the requisite pulses. Then,the spinning information is utilized for 2 D slice imaging via a CS method; consequently the high resolution 3 D image is obtained. The altitude information of scattering centers can be pre-estimated making use of the 2 D images obtained by orbital information,thus the proposed 3 D imaging method performs better than existing methods in terms of complexity and imaging quality. The effectiveness of the proposed method is validated with the simulation results.
作者 刘记红 韩国强 魏雁飞 樊友谊 LIU Ji-hong;HAN Guo-qiang;WEI Yan-fei;FAN You-yi(Luoyang Electronic Equipment Test Center of China, Luoyang, Henan 471003, China)
出处 《电子信息对抗技术》 2018年第3期1-7,77,共8页 Electronic Information Warfare Technology
关键词 ISAR成像 压缩感知 轨道运动 高速自旋 ISAR imaging compressed sensing orbital motion rapidly spinning
  • 相关文献

参考文献10

二级参考文献149

  • 1DING XiaoFeng1,FAN MeiMei1,WEI XiZhang1,LI Xiang1 & Xiao HuaiTie2 1 Institute of Space Electronics Information Technology,National University of Defense Technology,Changsha 410073,China,2 School of Electronic Science and Engineering,National University of Defense Technology,Changsha 410073,China.Narrowband imaging method for spatial precession cone-shaped targets[J].Science China(Technological Sciences),2010,53(4):942-949. 被引量:14
  • 2文树梁,袁起,秦忠宇.宽带线性调频信号Stretch处理误差获取与补偿[J].系统工程与电子技术,2005,27(1):36-39. 被引量:7
  • 3Bai X R, Sun G C, Wu Q S, Xing M D and Bao Z. 2011. Narrow-band radar imaging of spinning targets. Science China: Information Sciences, 54(4) : 873 -883 [DOI 10. 1007/s11432 -011 -4182 -2]. 被引量:1
  • 4Cands E J, Romberg J, and Tao T. 2006. Robust uncertainty princi- ples: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52 (2) : 489 -509 [DOI 10. ll09/TIT. 2005. 862083 ]. 被引量:1
  • 5Dai W and Milenkovic O. 2009. Subspaee pursuit for compressive sens- ing signal reconstruction. IEEE Transactions on Information Theory,55(5) : 2230 -2249 [DOI 10. ll09/TIT. 2009. 2016006]. 被引量:1
  • 6Deans S R. 1993. The radon transform and some of its applications. Floride: Krieger Publishing Company. 被引量:1
  • 7Donoho D L. 2006. Compressed sensing. IEEE Transactions on Informa- tion Theory, 52(4) : 1289 - 1306 [DOI I0. 1109/ TIT. 2006. 871582]. 被引量:1
  • 8Hong L, Dai F Z and Liu H W. 2013. Sparse Doppler-only snapshot im- aging for space debris. Signal Processing, 93(4) : 731 -741 [DOI 10. 1016/j. sigpro. 2012.09. 015 ]. 被引量:1
  • 9Needell D and Tropp J A. 2009. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26 (3) : 301 - 321 [ DOI 10. 1016/j. acha. 2008.07. 002 ]. 被引量:1
  • 10Sato T. 1999. Shape estimation of space debris using single-range doppler interferometry. IEEE Transactions on Geoscience and Remote Sensing, 37 (2) : 1000 - 1005 [DOI 10.1109/36. 752218 ]. 被引量:1

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部