期刊文献+

基于非线性分析的隧道围岩变形研究

Research on Deformation of Tunnel Surrounding Rock Based on Nonlinear Analysis
下载PDF
导出
摘要 应用GM(1,1)与RBF两者去预测信息,并结合非线性预测模型中的变形数据,用其与某围岩变形的结果同简单平均定权组合、最优线性组合相对比,通过神经网络将单项模型在组合模型中所占有比重运算出来。结果显示:此模型预测隧道围岩发生变形,结果相对于传统定权方式预测结果更加可靠,精度上有比较显著的提升,在实际应用中凸显了不错的工程和实践价值。 GM (1,1) and RBF are used to predict information, and combine deformation data in nonlinear prediction models. Using the result of the deformation of a certain surrounding rock with the simple average weighted combination and the optimal linear combination, the proportion of the single model in the combined model is calculated by the neural network. The results show that the prediction result of this model is more reliable than the traditional fixed weight forecasting method, and the accuracy has a significant improvement. It highlights the good engineering and practical value in practical applications.
作者 王科甫 WANG Ke-fu(China Railway First Survey and Design Institute Group Co., Ltd., Xi'an 710043, Chin)
出处 《煤炭技术》 CAS 2018年第6期106-107,共2页 Coal Technology
关键词 非线性分析 隧道围岩 位移序列 nonlinear analysis tunnel surrounding rock displacement sequence
  • 相关文献

参考文献7

二级参考文献43

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部