期刊文献+

Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes 被引量:3

Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes
原文传递
导出
摘要 A series of amphiphilic copolymers containing poly(vinyl chloride-r-acrylic acid) (P(VC-r-AA)) was synthesized and used to prepare membranes via a non-solvent induced phase separation method. The prepared membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle and zeta potential measurements. The copolymer P(VC-r-AA) chains did not dissolved in a coagulation bath, indicating that the AA segments were completely retained within the membrane. Enriching degree of AA segments in surface layer was 2 for copolymer membrane. In addition, the introduction of AA segments made the membrane electronegative and hydrophilic so that the membrane was sensitive to the solution pH. The fouling resistance, adsorption of Cu(II), Cr(III) and Ce(IV) ions and the desorption properties of the membranes were also determined. The copolymer membranes exhibited good antifouling performance with a fouling reversibility of 92%. The membranes also had good adsorption capacities for Cu(II), Cr(III) and Ce(IV) ions. The optimal pH for Cu(II) adsorption was 6 and the copolymer membrane has potential applications for low concentration Cu(II) removal. A series of amphiphilic copolymers containing poly(vinyl chloride-r-acrylic acid) (P(VC-r-AA)) was synthesized and used to prepare membranes via a non-solvent induced phase separation method. The prepared membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle and zeta potential measurements. The copolymer P(VC-r-AA) chains did not dissolved in a coagulation bath, indicating that the AA segments were completely retained within the membrane. Enriching degree of AA segments in surface layer was 2 for copolymer membrane. In addition, the introduction of AA segments made the membrane electronegative and hydrophilic so that the membrane was sensitive to the solution pH. The fouling resistance, adsorption of Cu(II), Cr(III) and Ce(IV) ions and the desorption properties of the membranes were also determined. The copolymer membranes exhibited good antifouling performance with a fouling reversibility of 92%. The membranes also had good adsorption capacities for Cu(II), Cr(III) and Ce(IV) ions. The optimal pH for Cu(II) adsorption was 6 and the copolymer membrane has potential applications for low concentration Cu(II) removal.
出处 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2018年第2期262-272,共11页 化学科学与工程前沿(英文版)
基金 This research was supported by the National High Technology Research and Development Program of China (Granted No. 2012AA03A602 ) , the National Basic Research Program of China (Granted No. 2009CB623402) and the National Natural Science Foundation of China (Grant No. 20974094).
关键词 poly(vinyl chloride-r-acrylic acid) negatively charged PVC membrane ANTI-FOULING heavy metal adsorption Cu(II)removal poly(vinyl chloride-r-acrylic acid) negatively charged PVC membrane anti-fouling heavy metal adsorption Cu(II)removal
  • 相关文献

同被引文献16

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部