期刊文献+

工作面瓦斯浓度时间序列特征挖掘与预警应用 被引量:11

Research on time series characteristics of gas concentration at working face and application of them to early warning
下载PDF
导出
摘要 为实现工作面瓦斯异常涌出的动态、实时预警,对工作面瓦斯浓度时间序列的概率分布进行分析,利用Shapiro-Wilk和Lilliefors联合正态检验的方法,深入挖掘工作面瓦斯浓度时间序列的分布特征;以潘三矿某掘进工作面为例,实时正态检验工作面过断层时的瓦斯浓度时间序列。结果表明:当影响工作面瓦斯涌出因素作用比较均匀、单一因素不起决定性作用时,瓦斯浓度时间序列服从正态分布;当不服从正态分布时,则断层对工作面瓦斯涌出影响显著,有可能发生灾害。通过对工作面瓦斯浓度时间序列进行实时正态检验以辨识瓦斯涌出状态,将瓦斯浓度时间序列的分布特征作为预警的依据,能为瓦斯灾害的预测预警起有效的辅助作用。 For the purpose of the dynamic and real-time early warning of abnormal gas emission,the probability distribution of the time series of gas concentration at the working face was analyzed. The joint normal test of Shapiro-Wilk and Lilliefors was used to deeply excavate the distribution characteristics of time series of gas concentration at the working face. Taking a driving face in Pansan coal mine as an example,a real-time normal test of the time series of gas concentration during fault crossing was carried out. The research results show that when the factors influencing gas emission are similar in effect and none of them plays a decisive role,the time series of gas concentration is normally distributed,that when disobeying the normal distribution,the fault has a significant influence on the gas emission at the working face,which may lead to disasters,that through the real-time normal test of the time series of gas concentration in the working face,the gas emission state can be identified,and that the distribution characteristics of the time series of gas concentration can be taken as the basis of the early warning,which can play a helpful role in the prediction and early warning of gas disasters.
作者 杨艳国 穆永亮 秦洪岩 YANG Yanguo;MU Yongliang;QIN Hongyan(School of Mining, Liaoning Technical University, Fuxin Liaoning 123000, China;Major Scientific and Technological Platform of Universities in Liaoning- Research Center of Coal Resources Safe mining and Clean Utilization Engineering, Fuxin Liaoning 123000, China;School of Safety Engineering, North China Institute of Science and Technology, Beijing 101601, China)
出处 《中国安全科学学报》 CAS CSCD 北大核心 2018年第3期120-125,共6页 China Safety Science Journal
关键词 瓦斯浓度 时间序列 正态分布 假设检验 异常辨识 灾害预警 gas concentration time series normal distribution hypothesis test identification of abnormality disaster warning
  • 相关文献

参考文献16

二级参考文献124

共引文献256

同被引文献147

引证文献11

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部