期刊文献+

二四混水平因子设计在Lee偏差下的均匀性

Uniformity of Mixed Two-and-Four-Level Factorial Designs Under Lee Discrepancy
下载PDF
导出
摘要 讨论了二四混水平因子设计在Lee偏差下的均匀性,并给出了Lee偏差的一个下界,该下界可以作为搜索Lee偏差下二四混水平均匀设计的一个基准. The present paper focuses on the uniformity of mixed two-and four-level factorial designs under Lee discrepancy.A lower bound of Lee discrepancy is provided,which can be served as a benchmark to search uniform designs with mixed two-and-four-level in terms of Lee discrepancy.
作者 胡柳平 刘佳琦 王康 欧祖军 HU Liuping;LIU Jiaqi;WANG Kang;OU Zujun(College of Mathematics and Statistics,Jishou University,Jishou 416000, Hunan China)
出处 《吉首大学学报(自然科学版)》 CAS 2018年第2期13-16,共4页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(11561025 11701213) 湖南省自然科学基金资助项目(2017JJ2218 2017JJ3253) 湖南省研究生科研创新项目(CX2017B716)
关键词 混水平设计 U型设计 均匀设计 Lee偏差 下界 mixed level designs U-type designs uniform designs Lee discrepancy lower bound
  • 相关文献

参考文献3

二级参考文献20

  • 1Chatterjee K, Fang K T, Qin H. Uniformity in factorial designs with mixed levels. J Statist Plann Inference, 2005, 128: 593-607. 被引量:1
  • 2Fang K T, Li R, Sudjianto A. Design and Modelling for Computer Experiments. London: Chapman and Hall, 2005. 被引量:1
  • 3Fang K T, Ma C X, Mukerjee R. Uniformity in fractional factorials. In: Fang K T, Hickernell F J, Niederreiter H, eds. Monte Carlo and Quaai-Monte Carlo Methods in Scientific Compnting. Berlin: Springer-Verlag, 2002, 232-241. 被引量:1
  • 4Fang K T, Wang Y. Number-Theoretic Methods in Statistics. New York: Chapman and Hall, 1994. 被引量:1
  • 5Hickernell F J, Liu M Q. Uniform designs limit aliasing. Biometrika, 2002, 89: 893-904. 被引量:1
  • 6Mukerjee R, Wu C F J. On the existence of saturated and nearly saturated asymmetrical orthogonal arrays. Ann Statist, 1995, 23: 2102-2115. 被引量:1
  • 7Xu H. Minimum moment aberration for nonregular designs and supersaturated designs. Statist Sinica, 2003, 13: 691-708. 被引量:1
  • 8Xu H, Wu C F J. Generalized minimum aberration for asymmetrical fractional factorial designs. Ann Statist, 2001, 29: 549-560. 被引量:1
  • 9Zhon Y D, Ning J H, Song X B. Lee discrepancy and its applications in experimental designs. Statist Probab Lett, 2008, 78: 1933-1942. 被引量:1
  • 10Zou N, Ren P, Qin H. A note on Lee discrepancy. Statist Probab Lett, 2009, 79: 496-500. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部