期刊文献+

The {P,k + 1}-reflexive Solution to System of Matrix Equations AX=C, XB=D 被引量:1

The {P,k + 1}-reflexive Solution to System of Matrix Equations AX=C, XB=D
下载PDF
导出
摘要 Let P ∈ C^(n×n) be a Hermitian and {k + 1}-potent matrix, i.e., P^(k+1)= P = P~*,where(·)*~stands for the conjugate transpose of a matrix. A matrix X ∈ Cn×nis called{P, k + 1}-reflexive(anti-reflexive) if PXP = X(P XP =-X). The system of matrix equations AX = C, XB = D subject to {P, k + 1}-reflexive and anti-reflexive constraints are studied by converting into two simpler cases: k = 1 and k = 2, the least squares solution and the associated optimal approximation problem are also considered. Let P ∈ C^(n×n) be a Hermitian and {k + 1}-potent matrix, i.e., P^(k+1)= P = P~*,where(·)*~stands for the conjugate transpose of a matrix. A matrix X ∈ Cn×nis called{P, k + 1}-reflexive(anti-reflexive) if PXP = X(P XP =-X). The system of matrix equations AX = C, XB = D subject to {P, k + 1}-reflexive and anti-reflexive constraints are studied by converting into two simpler cases: k = 1 and k = 2, the least squares solution and the associated optimal approximation problem are also considered.
出处 《Chinese Quarterly Journal of Mathematics》 2018年第1期32-42,共11页 数学季刊(英文版)
基金 Supported by the Education Department Foundation of Hebei Province(QN2015218) Supported by the Natural Science Foundation of Hebei Province(A2015403050)
关键词 system of matrix equations potent matrix {P k + 1}-reflexive (anti-reflexive) approximation problem least squares solution system of matrix equations potent matrix {P k + 1}-reflexive (anti-reflexive) approximation problem least squares solution
  • 相关文献

参考文献1

二级参考文献3

共引文献2

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部