期刊文献+

基于灰色神经网络的中国2020—2030年铬矿需求预测 被引量:8

Demand Forecasting of China's Chrome Ore from 2020 to 2030 Based on Grey Neural Network
下载PDF
导出
摘要 我国铬矿资源极度匮乏、供需矛盾尖锐,铬矿需求预测对我国未来生产规划及合理开发海外铬矿资源具有重要的意义。对世界铬矿资源分布及市场现状进行了深入分析,基于1997—2016年统计数据运用灰色关联分析法对我国铬矿需求影响因素进行选择,将灰色预测方法与BP神经网络相结合构建铬矿需求的灰色神经网络预测模型,提高了预测精度,并利用BP神经网络预测系统和Matlab软件对我国2020—2030年铬矿资源需求量进行预测。预测结果显示,灰色神经网络模型的拟合效果较好,未来十几年我国铬矿需求量仍将持续增长,年均增长率达6.87%。基于预测结果,提出了增加我国铬矿资源供给的对策建议。 Chromium resources in China were extremely scarce,which had a sharp contradiction between supply and demand. Demand forecasting of Chrome ore was of great significance for the future production planning and reasonable exploitation of overseas Chromium resources. The global distribution and market situation of Chromium resources were analyzed. Based on the statistical data from1997 to 2016,the grey correlation analysis method was used to select the main factors influencing the demand of Chrome ore in China.The grey prediction method combined with BP neural network was used to construct a grey neural network prediction model for the demand of Chrome ore,which had better precision of prediction. The BP neural network prediction system and Matlab software were used to predict the demand of Chrome ore in China from 2020 to 2030. The predicted results showed that the fitting effect of the grey neural network model was good,and the demand for Chromium ore in the next decade would still be in a sustained growth trend,the average annual growth rate would be reached 6. 87%. And then some countermeasures and suggestions were put forward for increasing the supply of Chrome resources in China.
作者 郑明贵 袁雪梅 ZHENG Ming- gui1,2 , YUAN Xue - mei1(1. Research Center of Mining Trade & Investment, Jiangxi University of Science and Technology, Ganzhou 341000, China ; 2. The School of Management, University of Science and Technology of China, Hefei 230026, Chin)
出处 《资源开发与市场》 CAS CSSCI 2018年第6期747-752,共6页 Resource Development & Market
基金 国家社会科学基金项目"海外矿业投资经营管理风险评估与预警系统研究"(编号:12CGL008) 江西理工大学清江青年英才支持计划项目"一带一路沿线国家矿产资源开发利用风险评价技术研究"(编号:16QJYC012)
关键词 铬矿 需求预测 灰色神经网络 资源开发 对策 Chrome ore demand prediction grey neural network resource development countermeasure
  • 相关文献

参考文献16

二级参考文献113

共引文献131

同被引文献174

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部