期刊文献+

基于Gabor滤波的语音识别鲁棒性研究 被引量:2

Research on Speech Recognition Robustness Based on Gabor Filtering
下载PDF
导出
摘要 为了提高语音识别系统的鲁棒性,提出一种基于GBFB(spectro-temporal Gabor filter bank)的声学特征提取方法,并通过分块PCA算法对高维的GBFB特征进行降维处理,最后在多个相同噪音环境对GBFB特征以及常用的GFCC,MFCC,LPCC等特征进行抗噪性能对比,与GFCC相比GBFB特征的识别率提高了5.35%,与MFCC特征相比提升了7.05%,比LPCC特征识别的基线低9个分贝。实验结果表明,在噪音环境下与传统的GFCC、MFCC以及LPCC等特征相比GBFB特征有更优越的鲁棒性。 In order to improve the robustness of speech recognition system,a method of extracting the acoustic features based on GBFB(spectro-temporal Gabor filter bank) is proposed,and the dimension of the GBFB is reduced by the block PCA algorithm.Finally,the feature of GBFB are compared with the feature of GFCC,MFCC and LPCC in different noise environments. The recognition rate of GBFB features is 5. 35% better than GFCC features,the recognition rate of GBFB features is 7. 05% better than MFCC features. Moreover,GBFB features are 9 d B lower than the LPCC recognition base. The experimental results show that the GBFB features exhibit better robustness than the traditional features of GFCC,MFCC and LPCC in the noisy environment.
作者 缑新科 徐高鹏 GOU Xin-ke;XU Gao-peng(College of Electrical and Information Engineering,Lanzhou University of Technology-,Lanzhou 730050,China;Key Laboratory of Gansu Advanced Control for Industrial Processes,Lanzhou 730050,China;National Experimental Teaching Demonstration Center of Electrical and Control Engineering,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《计算机与现代化》 2018年第5期20-24,共5页 Computer and Modernization
关键词 语音识别 鲁棒性 GABOR滤波 特征提取 GBFB特征 speech recognition robustness Gabor filter features extraction GBFB features
  • 相关文献

参考文献10

二级参考文献26

  • 1Huang Xuedong, Acero A, Hon H W. Spoken Language Processing.Prentice Hall,2001. 被引量:1
  • 2Young S, Kershaw D, Odell J, et al. The HTK Book.Microsoft Corporation &CUED,2000. 被引量:1
  • 3Duda R O, Hart P E, Stork D G. Pattern Classification (Second Edition). A Wiley-interscience Publication, 2001. 被引量:1
  • 4Wendt S, Fink G A, Kummert F. Forward Masking for Increased Robustness in Automatic Speech Recognition. in: Proc. of European Conf. on Speech Communication and Technology, Aalborg,Danemark, 2001,1:615-618. 被引量:1
  • 5Hermansky H. Perceptual Linear Predictive(PLP) Analysis for Speech.J Acoust Soc Am ,1990,87:1738-1752. 被引量:1
  • 6Xu Jinfu,Electron Lett,2000年,36卷,14期,1247页 被引量:1
  • 7Bu L,IEEE Trans SAP,2000年,8卷,2期,105页 被引量:1
  • 8沈--,电声技术,1997年,10卷,2页 被引量:1
  • 9Pan Davis,IEEE Trans Multi Media,1995年,2卷,2期,60页 被引量:1
  • 10Rabiner L Juang Biing-Hwang.Fundamentals of Speech Recognition[M].北京:清华大学出版社(影印版),1999.. 被引量:2

共引文献105

同被引文献22

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部