期刊文献+

全局相机姿态优化下的快速表面重建

Real-time surface reconstruction based global camera pose optimization
下载PDF
导出
摘要 针对传统三维重建算法存在的漂移问题,提出了一种端到端的在线大规模三维场景重建算法。首先,使用一种在线估计策略来鲁棒地确定相机的旋转姿态,同时构建层次优化框架用于融合深度数据的输入。然后,依据相机的全局估计姿态对每一帧的信息进行优化,解除了算法对目标跟踪时间的限制,完成了对帧间关系对象的实时跟踪。试验结果表明:本文算法的平均重建时间为399ms,平均估计迭代最低点(ICP)次数为20,完成每帧变换的时间为100ms;系统对大规模场景的重建具有鲁棒性,且实时性较好,是一种具有对应关系稀疏特性、结构信息稠密特性和相机光照一致特性的实时三维重建算法。 An end-to-end online large-scale 3 Dscene reconstruction method is proposed.This method uses robustness to estimate the rotation attitude of the camera and constructs a hierarchical optimization framework for the fusion of depth data input.Then,the information of each frame is optimized according to the global pose of the camera,and the algorithm limits the target tracking time and completes real-time tracking of the frame.Experimental results show that the average time to reconstruct the algorithm reaches 399 ms and the average number of estimated Iterative Closest Point(ICP)times is 20,which needs 100 ms to complete each frame transformation.The system is robust to the reconstruction of large-scale scenes and has better real-time performance.This method is a realtime three-dimensional reconstruction system with corresponding sparseness, dense structure information and camera illustration uniformity.
作者 林金花 王延杰 王璐 姚禹 LIN Jin- hua;WANG Yan-jie;WANG Lu;YAO Yu(School of Application Technology, Changchun University of Technology, Changchun 130012, China;Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun 130033, China;College of Mechanical Science and Engineering, J ilin University, Changchun 130012, China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第3期909-918,共10页 Journal of Jilin University:Engineering and Technology Edition
基金 "863"国家高技术研究发展计划项目(2014AA7031010B) 吉林省教育厅"十三五"科学技术研究项目(吉教科合字[2016]345)
关键词 计算机应用 机器视觉 三维重建 实时体素融合 姿态估计 computer application machine vision 3D reconstruction online volume fusion pose estimation
  • 相关文献

参考文献6

二级参考文献71

  • 1田庆国,葛宝臻,杜朴,郁道银,吕且妮.基于激光三维扫描的人体特征尺寸测量[J].光学精密工程,2007,15(1):84-88. 被引量:51
  • 2YILMAZ A, JAVED O, SHAH M. Object track-ing: a survey[J]. ACM Computin; Surveys , 2006 : 38(4):l-45. 被引量:1
  • 3JEPSON A, FLEET D, EL-MARAGHI T. Robust online appearance models for visual tracking [J].IEEE Transactions on Pattern Analysis and Ma chine Intelligence, 2003, 25(10): 1296-1311. 被引量:1
  • 4ADAM A, RIVLIN E and SHIMSHONI I. Robust fragments-based tracking using the integral histo- gram[J]. IE1ZE Conference on Computer Vision and Pattern Recognition, 2006 : 798-805. 被引量:1
  • 5ROSS D, LIMJ, LINR, etal.. Incrementa]learn- ing for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1-3) .. 125- 141. 被引量:1
  • 6BOLME D S, BEVERIDGE J R, DRAPER I3 A, et al.. Visual object tracking using adaptive correla tion filters [C]. 23rd IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR), 2010,13-18. 被引量:1
  • 7KALAI. Z, MIKOLAJCZYK K, MATAS J. Track- ing-learning-detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 43 (7):1409 1422. 被引量:1
  • 8HENRIQUES J F, CASEIRO R, MARTINS P, et al.. Exploiting the circulant structure of track ing-by-detection with kernels[C]. European Con- f erence on Computer Vision, 2012:702-715. 被引量:1
  • 9DANELLJAN M, KHAN F S, FELSBERG M. Adaptive color attributes {or real-time visual track- ing[C]. 27th IEEE Conference on Computer Vi- sion and Pattern Recognition ( CVPR) , 2014: 23- 28. 被引量:1
  • 10ZHANG K H, ZHANG L, YANG M H. Fast compressive tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10) ..2002-2015. 被引量:1

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部