期刊文献+

基于改进的k-means差分隐私保护方法在位置隐私保护中的应用 被引量:3

Application of improved k-means differential privacy protection in location privacy protection
下载PDF
导出
摘要 针对k-means差分隐私聚类结果的可用性较差的问题,依据LBS的数据采集特点对k-means算法进行了改进.仿真实验证明:在LBS隐私保护方面,提出的改进k-means聚类方法在聚类结果的匿名性方面相对普通差分隐私k-means聚类方法有一定程度的提高. In view of the poor availability of k-means differential privacy clustering results,the kmeans algorithm is improved on the basis of the characteristics of the data acquisition of LBS.Proved by simulation experiment,The newk-means clustering method proposed in this paper had a certain degree of improvement in the anonymity of clustering results than the ordinary differential privacy k-means clustering method in terms of LBS privacy protection.
作者 齐晓娜 王佳 徐东升 张宇敬 郭佳 刘阳 QI XiaonaI;WANG Jia;XU Dongsheng;ZHANG Yujing;GUO Jia;LIU Yang(Department of Information Management &Engineering,Hebei Finance University,Baoding071051,China;Experimental Teaching Center,Hebei Finance University,Baoding 071051,China;Department of Computer Applied Engineering,Hebei Software Institute,Baoding 071000,China)
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2018年第3期315-320,共6页 Journal of Hebei University(Natural Science Edition)
基金 河北省高等学校科学技术研究项目(QN2017327)
关键词 K-MEANS 聚类 差分隐私 位置隐私保护 k-means clustering differential privacy location privacy protection
  • 相关文献

参考文献10

二级参考文献128

  • 1SWEENEY L. ^-anonymity: a model for protecting privacy[ J ]. Inter-national Journal on Uncertainty, Fuzziness and Knowledge-based Systems,2002,10(5) :557-570. 被引量:1
  • 2SWEENEY L. Achieving A>anonymity privacy protection using gener-alization and suppression[ J]. International Journal on Uncertainty,Fuzziness and Knowledge-based Systems, 2002,10(5) : 571-588. 被引量:1
  • 3Li Ning-hui, LI Tian-cheng, VENKATASUBRAMANIAN S. (-closeness :privacy beyond A:-anonymity and /-diversity [ C ] //Proc of the 23rd International Conference on Data Engineering. Washington DC: IEEE Computer Society ,2007 :106-115. 被引量:1
  • 4MACHANAVAJJHALA A,KIFER D, GEHRKE J, et al. /-diversity; privacy beyond A:-anonymity [ C ] //Proc of the 22nd International Conference on Data Engineering. Washington DC:IEEE Computer Society,2006 :24-35. 被引量:1
  • 5CORMODE G,PROCOPIUC M,SRIVASTAVA D. et aL Differentially private publication of sparse data [ J ]. ArxiV Preprint arXiv : 1103. 0825,2011. 被引量:1
  • 6SARATHY R,MURALIDHAR K. Some additional insights on applying differential privacy for numeric data [ C ]//Proc of International Conference on Privacy in Statistical Databases. Berlin : Springer-Ver-lag,2010:210-219. 被引量:1
  • 7DWORK C, NAOR M,PITASSI T,et al. Pan-private streaming algorithms [C ] //Proc of the 1st Symposium on Innovations in Computer Science. Beijing:Tsinghua University Press, 2010. 被引量:1
  • 8DWORK C, NAOR M,PITASSI T, et al. Differential privacy under continual observation [ C ]//Proc of the 42nd ACM Symposium on Theory of Computing. New York: ACM Press,2010:715-724. 被引量:1
  • 9LI Ning-hui, QARDAJI W,SU Dong. Provably private data anony-mization: or, A:-anonymity meets differential privacy, CERIAS TR 2010-24[ R] . West Lafayette; Center for Education and Research Information Assurance and Security,Purdue University ,2010. 被引量:1
  • 10ZHOU Shu-heng, LIGETT K, WASSERMAN L. Differential privacy with compression [ C ] //Proc of IEEE International Symposium on Information Theory. Washington DC: IEEE Computer Society, 2009: 2718-2722. 被引量:1

共引文献336

同被引文献49

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部